A209432 Area A of the triangles such that A and the sides are integers and there exists at least one square inscribed in the triangle whose sides are also integers.
24, 96, 216, 294, 300, 324, 384, 600, 810, 864, 1176, 1200, 1296, 1452, 1536, 1920, 1944, 2400, 2520, 2646, 2700, 2904, 2916, 3240, 3456, 4056, 4320, 4704, 4800, 4950, 5184, 5400, 5808, 6144, 6300, 6936, 7260, 7290, 7350, 7500, 7680, 7776, 8064, 8100, 8214
Offset: 1
Keywords
Examples
294 is in the sequence because for (a, b, c) = (21, 28, 35) => x1 = 2*21*294/(2*294+21^2) = 12348/1029 = 12 is the integer value of the side of the square inscribed in the triangle (21, 28, 35) whose area equals 294 and whose side coincides with the side [21] of this triangle. But we also have a second square with the side x2 = 2*28*294/(2*294+28^2) = 16464/1372 = 12 whose side coincides with the side [28] of the same triangle.
Links
- Herbert Bailey and Duane Detemple, Squares inscribed in angles and triangles, Mathematics Magazine 71(4), 1998, 278-284.
- Eric W. Weisstein, MathWorld: Triangle Square Inscribing
Programs
-
Maple
with(numtheory):T:=array(1..1500):k:=0:nn:=500: for a from 1 to nn do: for b from a to nn do: for c from b to nn do: p:=(a+b+c)/2 : x:=p*(p-a)*(p-b)*(p-c): if x>0 then s:=sqrt(x) :if s=floor(s) and (irem(2*a*s,2*s+a^2) = 0 or irem(2*b*s,2*s+b^2) = 0 or irem(2*c*s,2*s+c^2) = 0) then k:=k+1:T[k]:= s: else fi:fi:od:od:od: L := [seq(T[i],i=1..k)]:L1:=convert(T,set):A:=sort(L1, `<`): print(A):
-
Mathematica
nn=500;lst={};Do[s=(a+b+c)/2;If[IntegerQ[s],area2=s (s-a) (s-b) (s-c);If[0
Formula
A = sqrt(p*(p-a)*(p-b)*(p-c)) with p = (a+b+c)/2 (Heron's formula);
Sides of the three squares: x1 = 2*A*a/(a^2+2*A); x2 = 2*A*b/(b^2+2*A); x3 = 2*A*c/(c^2+2*A).
Comments