cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209432 Area A of the triangles such that A and the sides are integers and there exists at least one square inscribed in the triangle whose sides are also integers.

Original entry on oeis.org

24, 96, 216, 294, 300, 324, 384, 600, 810, 864, 1176, 1200, 1296, 1452, 1536, 1920, 1944, 2400, 2520, 2646, 2700, 2904, 2916, 3240, 3456, 4056, 4320, 4704, 4800, 4950, 5184, 5400, 5808, 6144, 6300, 6936, 7260, 7290, 7350, 7500, 7680, 7776, 8064, 8100, 8214
Offset: 1

Views

Author

Michel Lagneau, Mar 09 2012

Keywords

Comments

Every triangle has three inscribed squares (squares in its interior such that all four of the square's vertices lie on sides of the triangle, so two of them lie on the same side and hence one side of the square coincides with part of a side of the triangle). However, in the case of a right triangle, two of the squares coincide and have a vertex at the triangle's right angle, so a right triangle has only two distinct inscribed squares. Within a given triangle, a longer common side is associated with a smaller inscribed square. If an inscribed square has sides of length x and the triangle has a side of length a, part of which side coincides with a side of the square, then x, a, and the triangle's area A are related according to x = 2Aa/(a^2+2A).
Property of this sequence: the numbers of the form 24*k^2 are in the sequence.
Theorem: Consider a triangle whose area A and sides (a, b, c) are integers such that there exists at least one square inscribed in this triangle whose sides x are also integers. Then, if the smallest side a = min {a, b, c} of this triangle is of the form a = 4k, k integer, then x = 3k and A = 24k^2.
Proof: Let k be an integer, and let the sides of a triangle be a = 4k, b = 13k, c = 15k. Then s = (a+b+c)/2 = 16k and A = sqrt(s(s-a)(s-b)(s-c)) = 24k^2. With x = 2Aa/(a^2+2A), we find x = 3k.

Examples

			294 is in the sequence because for (a, b, c) = (21, 28, 35) => x1 = 2*21*294/(2*294+21^2) = 12348/1029 = 12 is the integer value of the side of the square inscribed in the triangle (21, 28, 35) whose area equals 294 and whose side coincides with the side [21] of this triangle. But we also have a second square with the side x2 = 2*28*294/(2*294+28^2) = 16464/1372 = 12 whose side coincides with the side [28] of the same triangle.
		

Crossrefs

Programs

  • Maple
    with(numtheory):T:=array(1..1500):k:=0:nn:=500: for a from 1
    to nn do: for b from a to nn  do: for c from b to nn  do: p:=(a+b+c)/2 : x:=p*(p-a)*(p-b)*(p-c): if x>0 then s:=sqrt(x) :if s=floor(s) and (irem(2*a*s,2*s+a^2) = 0 or irem(2*b*s,2*s+b^2) = 0 or irem(2*c*s,2*s+c^2) = 0) then k:=k+1:T[k]:= s: else fi:fi:od:od:od: L := [seq(T[i],i=1..k)]:L1:=convert(T,set):A:=sort(L1, `<`): print(A):
  • Mathematica
    nn=500;lst={};Do[s=(a+b+c)/2;If[IntegerQ[s],area2=s (s-a) (s-b) (s-c);If[0
    				

Formula

A = sqrt(p*(p-a)*(p-b)*(p-c)) with p = (a+b+c)/2 (Heron's formula);
Sides of the three squares: x1 = 2*A*a/(a^2+2*A); x2 = 2*A*b/(b^2+2*A); x3 = 2*A*c/(c^2+2*A).