A209492 a(0)=1; for n >= 1, let k = floor((1 + sqrt(8*n-7))/2), m = n - (k^2 - k+2)/2. Then a(n) = 2^k + 2^(m+1) - 1.
1, 3, 5, 7, 9, 11, 15, 17, 19, 23, 31, 33, 35, 39, 47, 63, 65, 67, 71, 79, 95, 127, 129, 131, 135, 143, 159, 191, 255, 257, 259, 263, 271, 287, 319, 383, 511, 513, 515, 519, 527, 543, 575, 639, 767, 1023, 1025, 1027, 1031, 1039, 1055, 1087, 1151, 1279, 1535, 2047, 2049, 2051, 2055, 2063, 2079, 2111, 2175, 2303, 2559, 3071
Offset: 0
Examples
Consider n=19. Then k = floor((1 + sqrt(145))/2) = 6 and m = 19 - 16 = 3. Thus a(19) = 2^6 + 2^4 - 1 = 79.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
k = Floor[(1 + Sqrt[8*n - 7])/2]; m = n - (k^2 - k + 2)/2; a[n_] = If[n == 0, 1, 2^k + 2^(m + 1) - 1]; Table[a[n], {n, 0, 100}]
Formula
For i=0,1,..., the i-th row is 2^(i+1)-1, if j=0, and 2^(i+1)+2^j-1, if j=1,...,i.
Comments