cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209500 Number of nX5 0..4 arrays with every 2X2 subblock containing exactly one value repeat, and new values 0..4 introduced in row major order.

Original entry on oeis.org

52, 9393, 3268686, 1165032679, 416022303027, 148562491090605, 53052739133301878, 18945498248887912305, 6765569715455974117306, 2416032108072507755319229, 862781914811855377693247204
Offset: 1

Views

Author

R. H. Hardin Mar 09 2012

Keywords

Comments

Column 5 of A209503

Examples

			Some.solutions.for.n=4
..0..0..0..1..1....0..0..0..1..0....0..0..0..1..2....0..0..1..2..1
..1..2..3..0..4....1..2..3..1..4....1..2..3..3..1....1..2..0..0..1
..0..0..2..3..0....0..0..2..1..0....0..0..0..2..2....0..0..3..2..1
..1..2..3..4..3....1..2..1..0..2....1..2..3..0..4....1..2..2..1..3
		

Formula

Empirical: a(n) = 477*a(n-1) -39288*a(n-2) -2260566*a(n-3) +384983381*a(n-4) -7839029495*a(n-5) -822053991299*a(n-6) +43393443747057*a(n-7) -53028569481265*a(n-8) -43276863451172253*a(n-9) +861144708089830407*a(n-10) +12560105152201255943*a(n-11) -585547801427750429166*a(n-12) +1844814503928137349186*a(n-13) +169864312213397374809277*a(n-14) -1973425862832147661396693*a(n-15) -22712149774470250087869011*a(n-16) +523193464190926642340571533*a(n-17) +441660411868197024689408971*a(n-18) -72399044493040737831695861121*a(n-19) +297551907214542585886034744663*a(n-20) +5713832787499212458827821059861*a(n-21) -46623259772377465885556624035474*a(n-22) -237243127369110412124411695755424*a(n-23) +3524288981199833800362989098628637*a(n-24) +2017734872801406397171062873724219*a(n-25) -156854633713526170888417297289745006*a(n-26) +288740996321513734985376260993770412*a(n-27) +4248512257074452536352894145685116586*a(n-28) -15558777700629399566840752611585815096*a(n-29) -67069738645589682614836431998415986788*a(n-30) +391870580432283425810055509088818912984*a(n-31) +490477395685384136760468327177713204016*a(n-32) -5697674243306888319078564075420176168448*a(n-33) +1361972893213400216153081399915764209600*a(n-34) +49110417732470688323529968632616447403744*a(n-35) -57738853379778133440382246813990370347872*a(n-36) -239856563637438171277726574554616022449088*a(n-37) +473017651642156450864795051620927552310080*a(n-38) +565918982815415026472879163566265178445952*a(n-39) -1819274946494505618865129339183971184558080*a(n-40) -226770607406789393605631461901849446354176*a(n-41) +3439734464827697349267449602775539202958336*a(n-42) -1296196371235359346225463517905877093691392*a(n-43) -3102116320122327741128067294181852703551488*a(n-44) +2098262472225405871792913745858951958351872*a(n-45) +1180187397994592582735155882747328524566528*a(n-46) -1184748819500496796930575454944900028465152*a(n-47) -79179660215887860751640606150050469117952*a(n-48) +239377682403623686315699650654596059103232*a(n-49) -28581873174380158870112209651115589894144*a(n-50) -7808363148432063893510398863396858494976*a(n-51) for n>52