A209554 Primes that expressed in none of the forms n<+>2 and n<+>3, where the operation <+> is defined in A206853.
3, 97, 193, 257, 353, 449, 577, 641, 673, 769, 929, 1153, 1217, 1249, 1409, 1601, 1697, 1889, 2017, 2081, 2113, 2273, 2593, 2657, 2689, 2753, 3041, 3137, 3169, 3329, 3361, 3457, 3617, 4001, 4129, 4289, 4481, 4513, 4673, 4801, 4993, 5153, 5281, 5441, 5569
Offset: 1
Programs
-
Mathematica
hammingDistance[a_,b_] := Count[IntegerDigits[BitXor[a,b],2],1]; vS[a_,b_] := NestWhile[#+1&,a,hammingDistance[a,#]=!=b&]; (* vS[a_,b_] is the least c>=a, such that the binary Hamming distance D (a,c)=b.vS[a,b] is Vladimir's a<+>b *) A209554 = Apply[Intersection, Table[Map[Prime[#]&, Complement[Range[Last[#]], #]&[Map[PrimePi[#]&, Union[Map[#[[2]]&, Cases[Map[{PrimeQ[#], #}&[vS[#,n]]&, Range[7500]], {True,_}]]]]]],{n, 2, 3}]] (* be careful with ranges near 2^x *)
Comments