cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209554 Primes that expressed in none of the forms n<+>2 and n<+>3, where the operation <+> is defined in A206853.

Original entry on oeis.org

3, 97, 193, 257, 353, 449, 577, 641, 673, 769, 929, 1153, 1217, 1249, 1409, 1601, 1697, 1889, 2017, 2081, 2113, 2273, 2593, 2657, 2689, 2753, 3041, 3137, 3169, 3329, 3361, 3457, 3617, 4001, 4129, 4289, 4481, 4513, 4673, 4801, 4993, 5153, 5281, 5441, 5569
Offset: 1

Views

Author

Keywords

Comments

How relate these to A133870? - R. J. Mathar, Mar 13 2012
If the formulated below conjecture is true, then for n>=2, A209544 and this sequence coincide with A007519 and A133870 respectively.
Let n>=3 be odd and k>=2. We say that n possesses a property S_k, if for every integer m from interval [0,n) with the Hamming distance D(m,n) in [2,k], there exists an integer h from (m,n) with D(m,h)=D(m,n).
Conjecture (A209544 and this sequence correspond to cases k=2 and k=3 respectively).
Odd n>3 possesses the property S_k iff n has the form n=2^(2*k-1)*t+1.
Example. Let k=2, t=1. Then n=9=(1001)_2. All numbers m from [0,9) with D(m,9)=2 are 0,3,5.
For m=0, we can take h=3, since 3 from (0,9) and D(0,3)=2; for m=3, we can take h=5, since 5 from (3,9) and D(3,5)=2; for m=5, we can take h=6, since 6 from (5,9) and D(5,6)=2. - Vladimir Shevelev, Seqfan list Apr 05 2012.
For k=2 this conjecture is true (see comment in A182187). - Vladimir Shevelev, Apr 18 2012.

Crossrefs

Cf. A209544, A182187 (n<+>2), A182209 (n<+>3).
Cf. A133870.

Programs

  • Mathematica
    hammingDistance[a_,b_] := Count[IntegerDigits[BitXor[a,b],2],1]; vS[a_,b_] := NestWhile[#+1&,a,hammingDistance[a,#]=!=b&]; (* vS[a_,b_] is the least c>=a, such that the binary Hamming distance D (a,c)=b.vS[a,b] is Vladimir's a<+>b *) A209554 = Apply[Intersection, Table[Map[Prime[#]&, Complement[Range[Last[#]], #]&[Map[PrimePi[#]&, Union[Map[#[[2]]&, Cases[Map[{PrimeQ[#], #}&[vS[#,n]]&, Range[7500]], {True,_}]]]]]],{n, 2, 3}]] (* be careful with ranges near 2^x *)