A209577 Triangle of coefficients of polynomials u(n,x) jointly generated with A209578; see the Formula section.
1, 1, 1, 3, 2, 1, 5, 6, 3, 1, 9, 13, 10, 4, 1, 15, 28, 26, 15, 5, 1, 25, 56, 64, 45, 21, 6, 1, 41, 109, 146, 124, 71, 28, 7, 1, 67, 206, 319, 315, 216, 105, 36, 8, 1, 109, 382, 671, 758, 602, 349, 148, 45, 9, 1, 177, 697, 1372, 1744, 1576, 1056, 533, 201, 55, 10
Offset: 1
Examples
First five rows: 1; 1, 1; 3, 2, 1; 5, 6, 3, 1; 9, 13, 10, 4, 1; First three polynomials v(n,x): 1, 1 + x, 3 + 2x + x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209577 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209578 *)
Formula
u(n,x) = x*u(n-1,x) + v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + v(n-1,x) + 1,
where u(1,x)=1, v(1,x)=1.
The coefficients in the triangle seem to be T(n,m) = sum(k=0,n-m,2 * binomial(m+k, m)*binomial(k, n-k-m) - sum(i=0, n-m-k, binomial(m+k-1,k)*binomial(k,n-m-i-k))) by using the PARI syntax. - Thomas Baruchel, Jun 03 2018
Comments