cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209599 Triangle T(n,k), read by rows, given by (2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 5, 3, 0, 0, 8, 7, 1, 0, 0, 13, 15, 4, 0, 0, 0, 21, 30, 12, 1, 0, 0, 0, 34, 58, 31, 5, 0, 0, 0, 0, 55, 109, 73, 18, 1, 0, 0, 0, 0, 89, 201, 162, 54, 6, 0, 0, 0, 0, 0, 144, 365, 344, 145, 25, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 10 2012

Keywords

Comments

A skew version of A122075.

Examples

			Triangle begins :
  1
  2, 0
  3, 1, 0
  5, 3, 0, 0
  8, 7, 1, 0, 0
  13, 15, 4, 0, 0, 0
  21, 30, 12, 1, 0, 0, 0
  34, 58, 31, 5, 0, 0, 0, 0
  55, 109, 73, 18, 1, 0, 0, 0, 0
  89, 201, 162, 54, 6, 0, 0, 0, 0, 0
  144, 365, 344, 145, 25, 1, 0, 0, 0, 0, 0
  ...
		

Crossrefs

Programs

  • Mathematica
    T[0, 0] := 1; T[1, 0] := 2; T[1, 1] := 0; T[n_, k_] := T[n, k] = If[n<0, 0, If[k > n, 0, T[n - 1, k] + T[n - 2, k] + T[n - 2, k - 1]]]; Table[T[n, k], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Dec 19 2017 *)

Formula

G.f.: (1+x)/(1-x-(1+y)*x^2).
T(n,k) = T(n-1,k) + T(n-2,k) + T(n-2,k-1), T(0,0) = 1, T(1,0) = 2, T(1,1) = 0, T(n,k) = 0 if k<0 or if k>n.
Sum_{k, 0<=k<=n} T(n,k)*x^k = A040000(n), A000045(n+2), A000079(n), A006138(n), A026597(n), A133407(n), A133467(n), A133469(n), A133479(n), A133558(n), A133577(n), A063092(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively.