A209640 Global ranking function for restricted totally balanced binary strings given in A209641.
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 6, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
Examples
a(12)=3, as 12 occurs as the 3rd term (zero-based) in A209641. a(14)=0, as 14 doesn't occur in A209641.
Crossrefs
Programs
-
Scheme
(define (A209640 n) (if (or (zero? n) (not (member_of_A209641? n))) 0 (let* ((w (/ (binwidth n) 2))) (let loop ((rank 0) (row 1) (u (- w 1)) (n (- n (A053644 n))) (i (/ (A053644 n) 2)) (first_0_found? #f)) (cond ((or (zero? row) (zero? u) (zero? n)) (+ (expt 2 (-1+ w)) rank)) ((> i n) (loop rank (- row 1) u n (/ i 2) #t)) (else (loop (+ rank (if first_0_found? (A007318tr (- (+ row u) 1) (- row 1)) (A007318tr (- w 1) (- row 1)))) (+ row 1) (- u 1) (- n i) (/ i 2) first_0_found?))))))) (define (binwidth n) (let loop ((n n) (i 0)) (if (zero? n) i (loop (floor->exact (/ n 2)) (1+ i)))))
Comments