A209650 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 0 1 vertically.
2, 4, 4, 6, 16, 6, 9, 36, 36, 8, 14, 81, 102, 64, 10, 22, 196, 270, 216, 100, 12, 35, 484, 798, 630, 390, 144, 14, 56, 1225, 2354, 2156, 1215, 636, 196, 16, 90, 3136, 7210, 7128, 4690, 2079, 966, 256, 18, 145, 8100, 22232, 24990, 16830, 8904, 3276, 1392, 324, 20, 234
Offset: 1
Examples
Some solutions for n=4 k=3 ..1..1..1....1..1..1....1..1..0....0..0..0....0..1..0....0..0..0....0..1..0 ..1..1..1....1..1..1....1..1..0....0..1..1....1..1..0....0..0..0....0..0..0 ..1..1..1....0..1..0....1..1..0....0..1..0....0..0..0....0..0..0....0..0..0 ..1..1..1....0..1..0....1..1..0....0..0..0....0..0..0....0..0..0....0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..2828
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 2*n
k=2: a(n) = 4*n^2
k=3: a(n) = 2*n^3 + 6*n^2 - 2*n
k=4: a(n) = 9*n^3 + (9/2)*n^2 - (9/2)*n
k=5: a(n) = (7/2)*n^4 + 21*n^3 - (7/2)*n^2 - 7*n
k=6: a(n) = 22*n^4 + (88/3)*n^3 - 22*n^2 - (22/3)*n
k=7: a(n) = 7*n^5 + 70*n^4 + (35/3)*n^3 - (105/2)*n^2 - (7/6)*n
Comments