A209664 T(n,k) = count of degree k monomials in the power sum symmetric polynomials p(mu,k) summed over all partitions mu of n.
1, 2, 6, 3, 14, 39, 5, 34, 129, 356, 7, 74, 399, 1444, 4055, 11, 166, 1245, 5876, 20455, 57786, 15, 350, 3783, 23604, 102455, 347010, 983535, 22, 746, 11514, 94852, 513230, 2083902, 6887986, 19520264, 30, 1546, 34734, 379908, 2567230, 12505470, 48219486, 156167944, 441967518
Offset: 1
Examples
Table starts as: : 1; : 2, 6; : 3, 14, 39; : 5, 34, 129, 356; : 7, 74, 399, 1444, 4055; : 11, 166, 1245, 5876, 20455, 57786;
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Wikipedia, Symmetric Polynomials
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))) end: T:= (n, k)-> b(n$2, k): seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Nov 24 2016
-
Mathematica
p[n_Integer, v_] := Sum[Subscript[x, j]^n, {j, v}]; p[par_?PartitionQ, v_] := Times @@ (p[#, v] & /@ par); Table[Tr[(p[#, k] & /@ Partitions[l]) /. Subscript[x, _] -> 1], {l, 11}, {k, l}]