A209666 T(n,k) = count of degree k monomials in the complete homogeneous symmetric polynomials h(mu,k) summed over all partitions mu of n.
1, 2, 7, 3, 18, 55, 5, 50, 216, 631, 7, 118, 729, 2780, 8001, 11, 301, 2621, 12954, 45865, 130453, 15, 684, 8535, 55196, 241870, 820554, 2323483, 22, 1621, 28689, 241634, 1307055, 5280204, 17353028, 48916087, 30, 3620, 91749, 1012196, 6783210, 32711022, 124991685, 401709720, 1129559068
Offset: 1
Examples
Table starts as: 1; 2, 7; 3, 18, 55; 5, 50, 216, 631; 7, 118, 729, 2780, 8001;
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Wikipedia, Symmetric Polynomials
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1, k)*binomial(i+k-1, k-1)^j, j=0..n/i))) end: T:= (n, k)-> b(n$2, k): seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Mar 04 2016
-
Mathematica
h[n_, v_] := Tr@ Apply[Times, Table[Subscript[x, j], {j, v}]^# & /@ Compositions[n, v], {1}]; h[par_?PartitionQ, v_] := Times @@ (h[#, v] & /@ par); Table[Tr[(h[#, k] & /@ Partitions[l]) /. Subscript[x, _] -> 1], {l, 10}, {k, l}]