cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209666 T(n,k) = count of degree k monomials in the complete homogeneous symmetric polynomials h(mu,k) summed over all partitions mu of n.

Original entry on oeis.org

1, 2, 7, 3, 18, 55, 5, 50, 216, 631, 7, 118, 729, 2780, 8001, 11, 301, 2621, 12954, 45865, 130453, 15, 684, 8535, 55196, 241870, 820554, 2323483, 22, 1621, 28689, 241634, 1307055, 5280204, 17353028, 48916087, 30, 3620, 91749, 1012196, 6783210, 32711022, 124991685, 401709720, 1129559068
Offset: 1

Views

Author

Wouter Meeussen, Mar 11 2012

Keywords

Examples

			Table starts as:
  1;
  2,   7;
  3,  18, 55;
  5,  50, 216,  631;
  7, 118, 729, 2780, 8001;
		

Crossrefs

Main diagonal is A209668; row sums are A209667.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)*binomial(i+k-1, k-1)^j, j=0..n/i)))
        end:
    T:= (n, k)-> b(n$2, k):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Mar 04 2016
  • Mathematica
    h[n_, v_] := Tr@ Apply[Times, Table[Subscript[x, j], {j, v}]^# & /@ Compositions[n, v], {1}]; h[par_?PartitionQ, v_] := Times @@ (h[#, v] & /@ par); Table[Tr[(h[#, k] & /@ Partitions[l]) /. Subscript[x, _] -> 1], {l, 10}, {k, l}]