A209667 a(n) = count of monomials, of degrees k=0 to n, in the complete homogeneous symmetric polynomials h(mu,k) summed over all partitions mu of n.
1, 1, 9, 76, 902, 11635, 192205, 3450337, 73128340, 1696862300, 44414258862, 1264163699189, 39640715859359, 1340191402045395, 49097854149726795, 1924982506686743639, 80831323253459088871, 3607487926962810556542, 170964537623741430399076
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250
- Wikipedia, Symmetric Polynomials
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1, k)*binomial(i+k-1, k-1)^j, j=0..n/i))) end: a:= n-> add(b(n$2, k), k=0..n): seq(a(n), n=0..20); # Alois P. Heinz, Mar 04 2016
-
Mathematica
h[n_, v_] := Tr@ Apply[Times, Table[Subscript[x, j], {j, v}]^# & /@ Compositions[n, v], {1}]; h[par_?PartitionQ, v_] := Times @@ (h[#, v] & /@ par); Tr/@ Table[Tr[(h[#, k] & /@ Partitions[l]) /. Subscript[x, _] -> 1], {l, 10}, {k, l}]
Formula
Row sums of table A209666.
Extensions
a(0), a(11)-a(18) from Alois P. Heinz, Mar 04 2016