cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209724 1/4 the number of (n+1) X 6 0..2 arrays with every 2 X 2 subblock having distinct clockwise edge differences.

Original entry on oeis.org

8, 9, 10, 12, 14, 18, 22, 30, 38, 54, 70, 102, 134, 198, 262, 390, 518, 774, 1030, 1542, 2054, 3078, 4102, 6150, 8198, 12294, 16390, 24582, 32774, 49158, 65542, 98310, 131078, 196614, 262150, 393222, 524294, 786438, 1048582, 1572870, 2097158
Offset: 1

Views

Author

R. H. Hardin, Mar 12 2012

Keywords

Comments

Column 5 of A209727.
Conjecture: a(1) = 8; for n > 1, a(n) is the smallest integer m such that m = ((2x * a(n-1)) /(x+1)) - x , with x a positive nontrivial divisor of m. (This is true at least for a(1) to a(100).) - Enric Reverter i Bigas, Oct 11 2020

Examples

			Some solutions for n=4:
..2..1..2..1..2..1....2..0..2..0..1..0....2..1..2..1..2..1....0..1..0..1..0..2
..0..2..0..2..0..2....1..2..1..2..0..2....0..2..0..2..0..2....2..0..2..0..2..1
..1..0..1..0..1..0....2..0..2..0..1..0....2..1..2..1..2..1....0..1..0..1..0..2
..0..2..0..2..0..2....1..2..1..2..0..2....0..2..0..2..0..2....2..0..2..0..2..1
..1..0..1..0..1..0....2..0..2..0..1..0....1..0..1..0..1..0....0..1..0..1..0..2
		

Crossrefs

Formula

Empirical: a(n) = a(n-1) +2*a(n-2) -2*a(n-3).
Conjectures from Colin Barker, Mar 07 2018: (Start)
G.f.: x*(8 + x - 15*x^2) / ((1 - x)*(1 - 2*x^2)).
a(n) = 3*2^(n/2-1) + 6 for n even.
a(n) = 2^((n+1)/2) + 6 for n odd.
(End)