A209724 1/4 the number of (n+1) X 6 0..2 arrays with every 2 X 2 subblock having distinct clockwise edge differences.
8, 9, 10, 12, 14, 18, 22, 30, 38, 54, 70, 102, 134, 198, 262, 390, 518, 774, 1030, 1542, 2054, 3078, 4102, 6150, 8198, 12294, 16390, 24582, 32774, 49158, 65542, 98310, 131078, 196614, 262150, 393222, 524294, 786438, 1048582, 1572870, 2097158
Offset: 1
Keywords
Examples
Some solutions for n=4: ..2..1..2..1..2..1....2..0..2..0..1..0....2..1..2..1..2..1....0..1..0..1..0..2 ..0..2..0..2..0..2....1..2..1..2..0..2....0..2..0..2..0..2....2..0..2..0..2..1 ..1..0..1..0..1..0....2..0..2..0..1..0....2..1..2..1..2..1....0..1..0..1..0..2 ..0..2..0..2..0..2....1..2..1..2..0..2....0..2..0..2..0..2....2..0..2..0..2..1 ..1..0..1..0..1..0....2..0..2..0..1..0....1..0..1..0..1..0....0..1..0..1..0..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = a(n-1) +2*a(n-2) -2*a(n-3).
Conjectures from Colin Barker, Mar 07 2018: (Start)
G.f.: x*(8 + x - 15*x^2) / ((1 - x)*(1 - 2*x^2)).
a(n) = 3*2^(n/2-1) + 6 for n even.
a(n) = 2^((n+1)/2) + 6 for n odd.
(End)
Comments