A209752 Triangle of coefficients of polynomials v(n,x) jointly generated with A209751; see the Formula section.
1, 2, 2, 2, 6, 4, 3, 9, 16, 8, 3, 16, 33, 40, 16, 4, 20, 67, 105, 96, 32, 4, 30, 103, 242, 305, 224, 64, 5, 35, 169, 441, 793, 833, 512, 128, 5, 48, 230, 792, 1664, 2424, 2177, 1152, 256, 6, 54, 338, 1230, 3272, 5736, 7031, 5505, 2560, 512, 6, 70, 430
Offset: 1
Examples
First five rows: 1 2...2 2...6....4 3...9....16...8 3...16...33...40...16 First three polynomials v(n,x): 1, 2 + 2x , 2 + 6x + 4x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209751 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209752 *)
Formula
u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments