A209757 Triangle of coefficients of polynomials v(n,x) jointly generated with A013609; see the Formula section.
1, 3, 2, 5, 8, 4, 7, 18, 20, 8, 9, 32, 56, 48, 16, 11, 50, 120, 160, 112, 32, 13, 72, 220, 400, 432, 256, 64, 15, 98, 364, 840, 1232, 1120, 576, 128, 17, 128, 560, 1568, 2912, 3584, 2816, 1280, 256, 19, 162, 816, 2688, 6048, 9408, 9984, 6912, 2816, 512
Offset: 1
Examples
First five rows: 1; 3, 2; 5, 8, 4; 7, 18, 20, 8; 9, 32, 56, 48, 16; First three polynomials v(n,x): 1 3 + 2x 5 + 8x + 4x^2. From _Philippe Deléham_, Mar 24 2012: (Start) (1, 2, -2, 1, 0, 0, ...) DELTA (0, 2, 0, 0, 0, ...) begins: 1; 1, 0; 3, 2, 0; 5, 8, 4, 0; 7, 18, 20, 8, 0; 9, 32, 56, 48, 16, 0; (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1; v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A013609 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209757 *)
Formula
u(n,x) = x*u(n-1,x) + x*v(n-1,x) + 1,
v(n,x) = (x+1)*u(n-1,x) + (x+1)*v(n-1,x) + 1,
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 24 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1 - x - 2*y*x + 2*x^2 + 2*x^2*y)/(1 - 2*x - 2*y*x + x^2 + 2*y*x^2).
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - 2*T(n-2,k-2), T(0,0) = T(1,0) = 1, T(1,1) = T(2,2) = 0, T(2,0) = 3, T(2,1) = 2 and T(n,k) = 0 if k < 0 or if k > n.
T(n,k) = 2^k*binomial(n-1,k)*(2*n-k-1)/(k+1). (End)
From Peter Bala, Dec 21 2014: (Start)
Following remarks assume an offset of 0.
T(n,k) = 2^k * A110813(n,k).
Riordan array ((1+x)/(1-x)^2, 2*x/(1-x)).
exp(2*x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(2*x)*(7 + 18*x + 20*x^2/2! + 8*x^3/3!) = 7 + 32*x + 120*x^2/2! + 400*x^3/3! + 1232*x^4/4! + .... The same property holds more generally for Riordan arrays of the form (f(x), 2*x/(1-x)). (End)
Comments