A209767 Triangle of coefficients of polynomials u(n,x) jointly generated with A209768; see the Formula section.
1, 1, 2, 2, 6, 5, 3, 12, 20, 12, 4, 21, 52, 63, 29, 5, 33, 109, 199, 187, 70, 6, 48, 200, 490, 700, 536, 169, 7, 66, 334, 1032, 1988, 2322, 1498, 408, 8, 87, 520, 1948, 4742, 7488, 7378, 4109, 985, 9, 111, 767, 3388, 10004, 19992, 26664, 22685, 11109
Offset: 1
Examples
First five rows: 1 1...2 2...6....5 3...12...20...12 4...21...52...63...29 First three polynomials u(n,x): 1, 1 + 2x, 2 + 6x + 5x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209767 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209768 *)
Formula
u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=2x*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments