A209768 Triangle of coefficients of polynomials v(n,x) jointly generated with A209767; see the Formula section.
1, 2, 3, 3, 7, 7, 4, 14, 26, 17, 5, 24, 64, 83, 41, 6, 37, 130, 251, 250, 99, 7, 53, 233, 599, 899, 723, 239, 8, 72, 382, 1232, 2478, 3022, 2034, 577, 9, 94, 586, 2282, 5774, 9476, 9700, 5607, 1393, 10, 119, 854, 3908, 11952, 24734, 34152, 30063
Offset: 1
Examples
First five rows: 1 2...3 3...7....7 4...14...26...17 5...24...64...83...41 First three polynomials v(n,x): 1, 2 + 3x , 3 + 7x + 7x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209767 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209768 *)
Formula
u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=2x*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments