cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209778 G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (1 + k^2*x) / (1 + x + k^2*x^2).

Original entry on oeis.org

1, 1, 1, 3, 5, 19, 49, 203, 733, 3315, 15241, 76731, 419973, 2375027, 14842721, 94159595, 655550445, 4632480883, 35405788601, 276183156827, 2295741573013, 19588533436019, 175928886218769, 1628494746863243, 15721340742796029, 156753433757122035, 1619488446357906409
Offset: 0

Views

Author

Paul D. Hanna, Jan 19 2013

Keywords

Comments

Compare to the identity:
Sum_{n>=0} x^n * Product_{k=1..n} (1 + t*k*x) / (1 + x + t*k*x^2) = (1+x)/(1-t*x^2).

Examples

			G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 19*x^5 + 49*x^6 + 203*x^7 +...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + x^2*(1+x)*(1+4*x)/((1+x+x^2)*(1+x+4*x^2)) + x^3*(1+x)*(1+4*x)*(1+9*x)/((1+x+x^2)*(1+x+4*x^2)*(1+x+9*x^2)) + x^4*(1+x)*(1+4*x)*(1+9*x)*(1+16*x)/((1+x+x^2)*(1+x+4*x^2)*(1+x+9*x^2)*(1+x+16*x^2)) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff( sum(m=0, n, x^m*prod(k=1, m, (1+k^2*x)/(1+x+k^2*x^2 +x*O(x^n))) ), n)}
    for(n=0, 30, print1(a(n), ", "))