A209802 Partial sums of exponential Möbius function, A166234.
1, 2, 3, 2, 3, 4, 5, 4, 3, 4, 5, 4, 5, 6, 7, 7, 8, 7, 8, 7, 8, 9, 10, 9, 8, 9, 8, 7, 8, 9, 10, 9, 10, 11, 12, 13, 14, 15, 16, 15, 16, 17, 18, 17, 16, 17, 18, 18, 17, 16, 17, 16, 17, 16, 17, 16, 17, 18, 19, 18, 19, 20, 19, 20, 21, 22, 23, 22, 23, 24, 25, 26
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- László Tóth, On certain arithmetic functions involving exponential divisors, II, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 27 (2007), pp. 155-166; arXiv preprint, arXiv:0708.3557 [math.NT], 2007-2009.
Programs
-
Haskell
a209802 n = a209802_list !! (n-1) a209802_list = scanl1 (+) a166234_list
-
Mathematica
f[p_, e_] := MoebiusMu[e]; em[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate @ Array[em, 100] (* Amiram Eldar, Nov 08 2020 *)
-
PARI
first(n)=my(s); vector(n,k, s+=factorback(apply(moebius, factor(k)[,2]))) \\ Charles R Greathouse IV, Sep 02 2015
-
PARI
a(n)=sum(k=1,n,factorback(apply(moebius, factor(k)[,2]))) \\ Charles R Greathouse IV, Sep 02 2015
Formula
a(n) ~ c * n, where c = Product_{p prime} (1 + Sum_{k>=2} (mu(k) - mu(k-1))/p^k) = 0.3609447238... (Tóth, 2007). - Amiram Eldar, Nov 08 2020
Comments