A209830 Triangle of coefficients of polynomials u(n,x) jointly generated with A209831; see the Formula section.
1, 1, 2, 1, 5, 5, 1, 7, 18, 13, 1, 10, 35, 59, 34, 1, 12, 61, 147, 185, 89, 1, 15, 90, 302, 558, 564, 233, 1, 17, 129, 527, 1324, 1986, 1685, 610, 1, 20, 170, 854, 2653, 5350, 6761, 4957, 1597, 1, 22, 222, 1278, 4811, 12066, 20383, 22277, 14406, 4181, 1
Offset: 1
Examples
First five rows: 1; 1, 2; 1, 5, 5; 1, 7, 18, 13; 1, 10, 35, 59, 34; First three polynomials u(n,x): 1 1 + 2x 1 + 5x + 5x^2. From _Philippe Deléham_, Mar 16 2012: (Start) (1, 0, 1/2, -3/2, 0, 0, ...) DELTA (0, 2, 1/2, 1/2, 0, 0, ...) begins: 1; 1, 0; 1, 2, 0; 1, 5, 5, 0; 1, 7, 18, 13, 0; 1, 10, 35, 59, 34, 0; (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209830 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209831 *)
Formula
u(n,x) = x*u(n-1,x) + (x+1)*v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + 2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
As DELTA-triangle with 0 <= k <= n: G.f.: (1+x-3*y*x-3*y*x^2+y^2*x^2)/(1-3*y*x-x^2-2*y*x^2+y^2*x^2). - Philippe Deléham, Mar 16 2012
As DELTA-triangle: T(n,k) = 3*T(n-1,k-1) + T(n-2,k) + 2*T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2 and T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Mar 16 2012
Comments