A209831 Triangle of coefficients of polynomials v(n,x) jointly generated with A209830; see the Formula section.
1, 1, 3, 1, 5, 8, 1, 8, 20, 21, 1, 10, 41, 71, 55, 1, 13, 65, 176, 235, 144, 1, 15, 99, 338, 684, 744, 377, 1, 18, 135, 590, 1536, 2490, 2285, 987, 1, 20, 182, 926, 3031, 6382, 8651, 6865, 2584, 1, 23, 230, 1388, 5359, 14065, 24875, 29020, 20284, 6765
Offset: 1
Examples
From _Philippe Deléham_, Mar 16 2012: (Start) First five rows: 1; 1, 3; 1, 5, 8; 1, 8, 20, 21; 1, 10, 41, 71, 55; First three polynomials v(n,x): 1 1 + 3x 1 + 5x + 8x^2. (1, 0, -1/3, -2/3, 0, 0, ...) DELTA (0, 3, -1/3, 1/3, 0, 0, ...) begins: 1; 1, 0; 1, 3, 0; 1, 5, 8, 0; 1, 8, 20, 21, 0; 1, 10, 41, 71, 55, 0; (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209830 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209831 *)
Formula
u(n,x) = x*u(n-1,x) + (x+1)*v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + 2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
As DELTA-triangle T(n,k) with 0 <= k <= n:
T(n,k) = 3*T(n-1,k-1) + T(n-2,k) + 2*T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 3 and T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Mar 16 2012
As DELTA-triangle with 0 <= k <= n: g.f.: (1 + x - 3*y*x - 2*y*x^2 + y^2*x^2)/(1 - 3*y*x - x^2 - 2*y*x^2 + y^2*x^2). - Philippe Deléham, Mar 16 2012
Comments