A209834
a(A074773(n) mod 1519829 mod 18) = A074773(n), 1 <= n <= 18.
Original entry on oeis.org
3343433905957, 1871186716981, 307768373641, 546348519181, 1362242655901, 2273312197621, 354864744877, 3474749660383, 2366338900801, 602248359169, 3215031751, 2152302898747, 315962312077, 457453568161, 528929554561, 3477707481751, 118670087467, 3461715915661
Offset: 0
A074773(15) mod 1519829 mod 18 = 0, so a(0) = A074773(15).
A074773(11) mod 1519829 mod 18 = 1, so a(1) = A074773(11).
A210588
Twenty-seven smaller strong pseudoprimes to bases 2,3,5,7 arranged in order given by a function f:N->{1..27}.
Original entry on oeis.org
6597606223981, 3474749660383, 5792018372251, 307768373641, 3477707481751, 1362242655901, 3461715915661, 4341937413061, 5537838510751, 10710604680091, 2273312197621, 602248359169, 10087771603687, 3343433905957, 2366338900801, 8006855187361, 457453568161, 11377272352951, 118670087467, 354864744877, 2152302898747, 528929554561, 546348519181, 315962312077, 3215031751, 4777422165601, 1871186716981
Offset: 1
A074773(1) appears in the 25th place because f(A074773(1)) = 25.
-
f(x)={f1 = x % 24729742 % 27; f2 = x % 24729769 % 27; h1 = 164352 >> f1 % 2;
h2=164352 >> f2 % 2; return((h1==h2)*f1 + (h1>h2)*f1+(h2>h1)*f2 + 1); };
p1=[3215031751,118670087467,307768373641,315962312077,354864744877,457453568161];
p2=[528929554561,546348519181,602248359169,1362242655901,1871186716981,2152302898747];
p3=[2273312197621,2366338900801,3343433905957,3461715915661,3474749660383];
p4=[3477707481751,4341937413061,4777422165601,5537838510751,5792018372251];
p5=[6597606223981,8006855187361,10087771603687,10710604680091,11377272352951];
a=vector(27); for(i=1,6, a[f(p1[i])] = p1[i]); for(i=1,6, a[f(p2[i])] = p2[i]);
for(i=1,5, a[f(p3[i])] = p3[i]); for(i=1,5, a[f(p4[i])] = p4[i]);
for(i=1,5, a[f(p5[i])] = p5[i]); for(i=1,27, print1(a[i],", "));
Showing 1-2 of 2 results.
Comments