cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A165559 Product of the arithmetic derivatives from 2 to n.

Original entry on oeis.org

1, 1, 4, 4, 20, 20, 240, 1440, 10080, 10080, 161280, 161280, 1451520, 11612160, 371589120, 371589120, 7803371520, 7803371520, 187280916480, 1872809164800, 24346519142400, 24346519142400, 1071246842265600, 10712468422656000
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A003415 := proc(n) local pfs ; if n <= 1 then 0 ; else pfs := ifactors(n)[2] ; n*add(op(2,p)/op(1,p),p=pfs) ; fi; end:
    A165559 := proc(n) mul( A003415(k),k=2..n) ; end: seq( A165559(n),n=2..30) ; # R. J. Mathar, Sep 26 2009
  • Mathematica
    d[0] = d[1] = 0; d[n_] := d[n] = n*Total[Apply[#2/#1 &, FactorInteger[n], {1}]]; a[n_] := Product[d[k], {k, 2, n}]; Table[a[n], {n, 2, 25}] (* Jean-François Alcover, Feb 21 2014 *)

Formula

a(n) = Product_{k=2..n} A003415(k).
From Amiram Eldar, Nov 15 2020: (Start)
Sum_{n>=2} 1/a(n) = A190144.
Sum_{n>=2} (-1)^n/a(n) = A209873. (End)

Extensions

Entries checked by R. J. Mathar, Sep 26 2009

A210937 Decimal expansion of the continued fraction 1'+1/(2'+2/(3'+3/...)), where n' is the arithmetic derivative of n.

Original entry on oeis.org

4, 2, 1, 4, 7, 8, 1, 6, 1, 2, 9, 8, 8, 6, 7, 3, 0, 9, 0, 6, 2, 0, 0, 9, 1, 1, 0, 4, 1, 1, 2, 1, 3, 6, 4, 3, 1, 1, 1, 4, 6, 0, 3, 3, 5, 0, 7, 7, 6, 8, 0, 9, 0, 3, 9, 6, 8, 4, 3, 3, 7, 4, 7, 8, 7, 9, 0, 8, 7, 9, 1, 4, 5, 4, 0, 0, 2, 2, 2, 0, 4, 8, 8, 1, 6, 9, 0, 0, 8, 5, 8, 7, 0, 5, 4, 9, 6, 8, 4, 4, 7, 5, 3, 5, 8, 2, 8, 2, 4, 3, 0, 7, 7, 2, 5, 0, 5, 0, 2, 4, 2, 5, 4, 2, 5, 8, 2, 8, 2
Offset: 0

Views

Author

Paolo P. Lava, May 11 2012

Keywords

Comments

A good approximation up to the 9th decimal digit is 4796/11379.

Examples

			0.42147816129886730906200911...
		

References

  • 1

Crossrefs

Programs

  • Maple
    with(numtheory);
    A210937:= proc(n)
    local a,b,c,I,p,pfs;
    b:=1;
    for i from n by -1 to 2 do
      pfs:=ifactors(i)[2]; a:=i*add(op(2,p)/op(1,p),p=pfs); b:=1/b*a+i;
    od;
    print(evalf(b,500));
    end:
    A210937(10000);
  • Mathematica
    digits = 129; d[0] = d[1] = 0; d[n_] := d[n] = n*Total[Apply[#2/#1&, FactorInteger[n], {1}]]; f[m_] := f[m] = Fold[d[#2]+#2/#1&, 1, Range[m] // Reverse] // RealDigits[#, 10, digits]& // First; f[digits]; f[m = 2digits]; While[f[m] != f[m/2], m = 2m]; f[m] (* Jean-François Alcover, Feb 21 2014 *)
Showing 1-2 of 2 results.