cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209902 E.g.f.: Product_{n>=1} 1/(1 - x^n)^(1/n!).

Original entry on oeis.org

1, 1, 3, 10, 50, 261, 1877, 13511, 122663, 1150988, 12656562, 142842855, 1882666887, 24961232401, 375233443223, 5784328028680, 98433762560780, 1704971188321787, 32593405802749763, 629093184347294419, 13243913786996162915, 283647771230983625422
Offset: 0

Views

Author

Paul D. Hanna, Mar 14 2012

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 10*x^3/3! + 50*x^4/4! + 261*x^5/5! +...
such that
A(x) = 1/((1-x) * (1-x^2)^(1/2) * (1-x^3)^(1/3!) * (1-x^4)^(1/4!) *...).
		

Crossrefs

Cf. A087906.

Programs

  • PARI
    {a(n)=n!*polcoeff(prod(m=1,n,1/(1-x^m+x*O(x^n))^(1/m!)),n)}
    for(n=0,21,print1(a(n),", "))

Formula

E.g.f.: exp( Sum_{n>=1} (exp(x^n) - 1)/n ).
E.g.f.: exp( Sum_{n>=1} A087906(n)*x^n/n! ) where A087906(n) = Sum_{d|n} (n-1)!/(d-1)!.
E.g.f.: Product_{n>=1} B(x^n)^(1/n) where B(x) = exp(exp(x)-1) = e.g.f. of Bell numbers.