A210109 Number of 3-divided binary sequences (or words) of length n.
0, 0, 0, 2, 7, 23, 54, 132, 290, 634, 1342, 2834, 5868, 12140, 24899, 50929, 103735, 210901, 427623, 865910, 1750505, 3535098, 7131321, 14374647, 28952661, 58280123, 117248217, 235770302, 473897980, 952183214, 1912535827, 3840345963, 7709282937, 15472242645, 31045402788, 62280978042
Offset: 1
Keywords
Examples
The two 3-divisible binary words of length 4 and the seven of length 5 are as follows. The periods indicate the division w = x.y.z. For example, 0.01.1 is 3-divided since 0011 < all of 0101, 1010, 0101, 1001, 0110. 0.01.1 0.10.1 0.001.1 0.010.1 0.01.10 0.01.11 0.100.1 0.10.11 0.110.1
References
- M. Lothaire, Combinatorics on words. A collective work by Dominique Perrin, Jean Berstel, Christian Choffrut, Robert Cori, Dominique Foata, Jean Eric Pin, Guiseppe Pirillo, Christophe Reutenauer, Marcel-P. Schützenberger, Jacques Sakarovitch and Imre Simon. With a foreword by Roger Lyndon. Edited and with a preface by Perrin. Encyclopedia of Mathematics and its Applications, 17. Addison-Wesley Publishing Co., Reading, Mass., 1983. xix+238 pp. ISBN: 0-201-13516-7, MR0675953 (84g:05002). See p. 144.
Links
- Michael S. Branicky, Python program using bitwise operations
- Giuseppe Pirillo and Stefano Varricchio, Some combinatorial properties of infinite words and applications to semigroup theory. Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993). Discrete Math. 153 (1996), no. 1-3, pages 239-251, MR1394958 (98f:05018).
Crossrefs
Programs
-
Python
# see link for faster, bit-based version from itertools import product def is3div(b): for i in range(1, len(b)-1): for j in range(i+1, len(b)): X, Y, Z = b[:i], b[i:j], b[j:] if all(b < bp for bp in [Z+Y+X, Z+X+Y, Y+Z+X, Y+X+Z, X+Z+Y]): return True return False def a(n): return sum(is3div("".join(b)) for b in product("01", repeat=n)) print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Aug 27 2021
Formula
Is there a formula or recurrence?
Extensions
Values confirmed and a(30)-a(31) by David Applegate, Mar 19 2012
a(32)-a(36) from Michael S. Branicky, Aug 27 2021
Comments