A210018 In base 7, numbers n which have 7 distinct digits, do not start with 0, and have property that the product (written in base 7) of any two adjacent digits is a substring of n.
1504326, 1506234, 1540326, 1543026, 1543260, 2153406, 2340615, 2341506, 2601543, 2603154, 2603415, 2604315, 2615034, 2615043, 2615403, 2615430, 3026154, 3154026, 3260154, 3260415, 3261504, 3261540, 3402615, 3406215, 3415026, 3415062, 4032615, 4053216, 4061325, 4062153, 4062315, 4132506, 4150326, 4150623, 4302615, 4306215, 4315026, 4315062, 4320615, 4321506, 4326015, 4326150, 5321406, 5321604, 6021534, 6023415, 6041325, 6043215, 6053214, 6132504, 6150234, 6150432, 6203415, 6204315, 6215034, 6215043, 6215304, 6215340, 6230415, 6231504, 6234015, 6234150
Offset: 1
Links
- Eric Angelini, 10 different digits, 9 products
- E. Angelini, 10 different digits, 9 products [Cached copy, with permission]
Comments