cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210024 Floor of the expected value of number of trials until all cells are occupied in a random distribution of 2n balls in n cells.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 11, 13, 16, 19, 23, 27, 33, 39, 47, 57, 68, 81, 97, 116, 139, 167, 199, 239, 286, 342, 409, 489, 585, 700, 838, 1002, 1199, 1434, 1716, 2053, 2456, 2938, 3515, 4205, 5030, 6018, 7199, 8612, 10302, 12325, 14744, 17638
Offset: 1

Views

Author

Washington Bomfim, Mar 16 2012

Keywords

Comments

Also floor of the expected value of number of trials until we have n distinct symbols in a random sequence on n symbols of length 2n.
From (2.3), see first reference,
p_0(2n,n)=Sum_{v=0..n-1}((-1)^v * binomial(n,v) * (n-v)^(2n)/n^(2n))
= 1/n^(2n).Sum_{v=0..n-1}( (-1)^v * binomial(n,v) * (n-v)^(2n)), so
the expected value 1/p_0(2n, n) =
1/(1/n^(2n).Sum_{v=0..n-1}( (-1)^v * binomial(n,v)*(n-v)^(2n)))
= n^(2n)/Sum_{v=0..n-1}( (-1)^v * binomial(n,v)*(n-v)^(2n) )

Examples

			For n=2, with symbols 0 and 1, the 2^4 sequences on 2 symbols of length 4 can be represented by 0000, 0001, 0010, 0011, 0100, 0101,0110, 0111, 1000, 1001, 1010, 1011, 1100, 1110, and 1111. We have 2 sequences with a unique symbol, and 14 sequences with 2 distinct symbols, so a(2) = floor(16/14) = floor(8/7) = 1.
		

References

  • W. Feller, An Introduction to Probability Theory and its Applications, 2nd ed, Wiley, New York, 1968, (2.3) p. 92. (Occupancy problems)

Crossrefs

Programs

  • Mathematica
    Table[Floor[n^(2 n)/Sum[((-1)^v*Binomial[n, v]*(n - v)^(2 n)), {v, 0, n - 1}]], {n, 100}] (* T. D. Noe, Mar 16 2012 *)

Formula

a(n) = floor(n^(2n)/Sum_{v=0..n-1}( (-1)^v * binomial(n,v) * (n-v)^(2n) ))