cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210031 Number of binary words of length n containing no subword 100001.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 63, 124, 244, 480, 944, 1857, 3653, 7186, 14136, 27808, 54703, 107610, 211687, 416424, 819176, 1611457, 3170007, 6235937, 12267137, 24131522, 47470763, 93382976, 183700022, 361368844, 710873303, 1398407365, 2750902517, 5411487988
Offset: 0

Views

Author

Alois P. Heinz, Mar 16 2012

Keywords

Comments

Each of the subwords 100001, 100011, 100101, 100111, 101001, 101011, 101111, 110001, 110101, 111001, 111101 and their binary complements give the same sequence.

Examples

			a(8) = 244 because among the 2^8 = 256 binary words of length 8 only 12, namely 00100001, 01000010, 01000011, 01100001, 10000100, 10000101, 10000110, 10000111, 10100001, 11000010, 11000011, 11100001 contain the subword 100001.
		

Crossrefs

Columns k=33, 35, 37, 39, 41, 43, 47, 49, 53, 57, 61 of A209972.

Programs

  • Maple
    a:= n-> (Matrix(6, (i, j)-> `if`(i=j-1, 1, `if`(i=6, [1, -1, 0, 0, 0, 2][j], 0)))^n. <<1, 2, 4, 8, 16, 32>>)[1, 1]: seq(a(n), n=0..40);

Formula

G.f.: -(x^5+1)/(x^6-x^5+2*x-1).
a(n) = 2^n if n<6, and a(n) = 2*a(n-1) -a(n-5) +a(n-6) otherwise.