A210031 Number of binary words of length n containing no subword 100001.
1, 2, 4, 8, 16, 32, 63, 124, 244, 480, 944, 1857, 3653, 7186, 14136, 27808, 54703, 107610, 211687, 416424, 819176, 1611457, 3170007, 6235937, 12267137, 24131522, 47470763, 93382976, 183700022, 361368844, 710873303, 1398407365, 2750902517, 5411487988
Offset: 0
Examples
a(8) = 244 because among the 2^8 = 256 binary words of length 8 only 12, namely 00100001, 01000010, 01000011, 01100001, 10000100, 10000101, 10000110, 10000111, 10100001, 11000010, 11000011, 11100001 contain the subword 100001.
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..3396 (terms 0..1000 from Alois P. Heinz)
- Index entries for linear recurrences with constant coefficients, signature (2,0,0,0,-1,1).
Crossrefs
Columns k=33, 35, 37, 39, 41, 43, 47, 49, 53, 57, 61 of A209972.
Programs
-
Maple
a:= n-> (Matrix(6, (i, j)-> `if`(i=j-1, 1, `if`(i=6, [1, -1, 0, 0, 0, 2][j], 0)))^n. <<1, 2, 4, 8, 16, 32>>)[1, 1]: seq(a(n), n=0..40);
Formula
G.f.: -(x^5+1)/(x^6-x^5+2*x-1).
a(n) = 2^n if n<6, and a(n) = 2*a(n-1) -a(n-5) +a(n-6) otherwise.
Comments