A210035 Triangle of coefficients of polynomials u(n,x) jointly generated with A210036; see the Formula section.
1, 3, 6, 2, 11, 6, 4, 19, 16, 12, 8, 32, 36, 36, 24, 16, 53, 76, 88, 80, 48, 32, 87, 152, 204, 208, 176, 96, 64, 142, 294, 444, 520, 480, 384, 192, 128, 231, 554, 932, 1208, 1280, 1088, 832, 384, 256, 375, 1024, 1896, 2704, 3136, 3072, 2432, 1792, 768
Offset: 1
Examples
First five rows: 1 3 6....2 11...6....4 19...16...12...8 First three polynomials u(n,x): 1, 3, 6 + 2x.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210035 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210036 *)
Formula
u(n,x)=u(n-1,x)+v(n-1,x)+1,
v(n,x)=u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments