cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210207 Area A of the non-right triangles such that A, the sides, and the circumradius are integers.

Original entry on oeis.org

168, 432, 480, 624, 672, 768, 1320, 1512, 1536, 1560, 1680, 1728, 1848, 1920, 2040, 2304, 2376, 2496, 2520, 2688, 2856, 3024, 3072, 3240, 3696, 3720, 3840, 3864, 3888, 4104, 4200, 4320, 4536, 5280, 5376, 5616, 5712, 6000, 6048, 6144, 6240, 6552, 6720, 6912
Offset: 1

Views

Author

Michel Lagneau, Mar 18 2012

Keywords

Comments

A103251 gives the areas of right triangles with the same property (the area, the sides, and the circumradius are integers). Thus the intersection of this sequence with A103251 will give the areas of 2 families of triangles with the same property: one family of right triangles and one family of non-right triangles.
For example a(3) = A103251(8) = 480 generates two triangles whose sides are
(a,b,c) = (32, 50, 78) = > A = 480, R = 65, and 32^2 + 50^2 is no square;
(a,b,c) = (20, 48, 52) = > A = 480, R = 26, and 20^2 + 48^2 = 52^2 is square.
{a(n) intersection A103251} = {480, 1320, 1536, 1920, 2520, 3024, 3696, 3840, ...}

Examples

			168 is in the sequence because, for (a,b,c) = (14,30,40), A = sqrt(42*(42-14)*(42-30)*(42-40)) = 168, and 14^2 + 30^2 is no square.
		

Crossrefs

Programs

  • Maple
    T:=array(1..4000):nn:=400:k:=0:for a from 1
    to nn do: for b from a to nn do: for c from b to nn do:  p:=(a+b+c)/2 : x:=p*(p-a)*(p-b)*(p-c): u:=a^2+b^2:if  x>0 then x1:=sqrt(x) : y:=a*b*c/(4*x1):
    else fi:if x1=floor(x1) and y = floor(y) and u <> c^2 then k:=k+1:T[k]:=x1:else fi:od:od:od: L := [seq(T[i],i=1..k)]:L1:=convert(T,set):A:=sort(L1, `<`): print(A):
  • Mathematica
    nn=400; lst={}; Do[s=(a+b+c)/2; If[IntegerQ[s], area2=s (s-a) (s-b) (s-c); If[0 < area2 && a^2 != b^2+c^2 && IntegerQ[Sqrt[area2]] && IntegerQ[a*b*c/(4*Sqrt[area2])], AppendTo[lst, Sqrt[area2]]]], {a,nn}, {b,a}, {c,b}]; Union[lst]

Formula

Area A = sqrt(s*(s-a)*(s-b)*(s-c)) with s = (a+b+c)/2 (Heron's formula);
Circumradius R = a*b*c/4A.