A210221 Triangle of coefficients of polynomials u(n,x) jointly generated with A210596; see the Formula section.
1, 2, 3, 2, 5, 4, 4, 8, 10, 8, 8, 13, 20, 24, 16, 16, 21, 40, 52, 56, 32, 32, 34, 76, 116, 128, 128, 64, 64, 55, 142, 240, 312, 304, 288, 128, 128, 89, 260, 488, 688, 800, 704, 640, 256, 256, 144, 470, 964, 1496, 1856, 1984, 1600, 1408, 512, 512, 233, 840
Offset: 1
Examples
First five rows: 1; 2; 3, 2; 5, 4, 4; 8, 10, 8, 8; First three polynomials u(n,x): 1 2 3 + 2x. From _Philippe Deléham_, Mar 25 2012: (Start) (1, 1, -1, 0, 0, 0, ...) DELTA (0, 0, 2, 0, 0, ...) begins: 1; 1, 0; 2, 0, 0; 3, 2, 0, 0; 5, 4, 4, 0, 0; 8, 10, 8, 8, 0, 0; 13, 20, 24, 16, 16, 0, 0; (End)
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x]; v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210221 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210596 *) With[{m = 10}, Rest[CoefficientList[CoefficientList[Series[(1-2*y*x)/(1-x-2*y*x-x^2+2*y*x^2), {x, 0, m}, {y, 0, m}], x], y]]]//Flatten (* G. C. Greubel, Dec 16 2018 *) T[n_, k_]:= If[k < 0 || k > n, 0, T[n-1, k] + 2*T[n-1, k-1] + T[n-2, k] - 2*T[n-2, k-1]]; T[1, 0] = 1 ; T[2, 0] = 2; T[2, 1] = 0; Join[{1}, Table[T[n, k], {n, 1, 10}, {k, 0, n-2}]//Flatten] (* G. C. Greubel, Dec 17 2018 *)
-
Python
from sympy import Poly from sympy.abc import x def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x) def v(n, x): return 1 if n==1 else u(n - 1, x) + 2*x*v(n - 1, x) def a(n): return Poly(u(n, x), x).all_coeffs()[::-1] for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 27 2017
Formula
u(n,x) = u(n-1,x) + v(n-1,x),
v(n,x) = u(n-1,x) + 2*x*v(n-1,x) [Corrected by Indranil Ghosh, May 27 2017]
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 25 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1-2*y*x)/(1-x-2*y*x-x^2+2*y*x^2).
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - 2*T(n-2,k-1), T(0,0) = T(1,0) = 1, T(2,0) = 2, T(1,1) = T(2,1) = T(2,2) = 0, T(n,k) = 0 if k < 0 or if k >= n. (End)
Comments