A210237 Triangle of distinct values M(n) of multinomial coefficients for partitions of n in increasing order of n and M(n).
1, 1, 2, 1, 3, 6, 1, 4, 6, 12, 24, 1, 5, 10, 20, 30, 60, 120, 1, 6, 15, 20, 30, 60, 90, 120, 180, 360, 720, 1, 7, 21, 35, 42, 105, 140, 210, 420, 630, 840, 1260, 2520, 5040, 1, 8, 28, 56, 70, 168, 280, 336, 420, 560, 840, 1120, 1680, 2520, 3360, 5040, 6720
Offset: 1
Examples
Trianglebegins: 1; 1, 2; 1, 3, 6; 1, 4, 6, 12, 24; 1, 5, 10, 20, 30, 60, 120; 1, 6, 15, 20, 30, 60, 90, 120, 180, 360, 720; 1, 7, 21, 35, 42, 105, 140, 210, 420, 630, 840, 1260, 2520, 5040; ... Thus for n=4 (fourth row) the distinct values of multinomial coefficients are: 4!/(4!) = 1 4!/(3!1!) = 4 4!/(2!2!) = 6 4!/(2!1!1!) = 12 4!/(1!1!1!1!) = 24
Links
- Alois P. Heinz, Rows n = 1..29, flattened
- George E. Andrews, Arnold Knopfmacher, and Burkhard Zimmermann, On the Number of Distinct Multinomial Coefficients, arXiv:math/0509470 [math.CO], 2005.
- Sergei Viznyuk, C-program for the sequence
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i<2, {1}, {seq(map(x-> x*i!^j, b(n-i*j, i-1))[], j=0..n/i)}) end: T:= n-> sort([map(x-> n!/x, b(n, n))[]])[]: seq(T(n), n=1..10); # Alois P. Heinz, Aug 13 2012
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0 || i<2, {1}, Union[Flatten @ Table[(#*i!^j&) /@ b[n-i*j, i-1], {j, 0, n/i}]]]; T[n_] := Sort[Flatten[n!/#& /@ b[n, n]] ]; Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Feb 05 2017, after Alois P. Heinz *)
Comments