cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210255 a(n) is the number of numbers m for which n is in interval (A007814(m!), A007814(m!) + A007814(m)].

Original entry on oeis.org

0, 1, 0, 1, 2, 0, 0, 1, 2, 1, 1, 2, 0, 0, 0, 1, 2, 1, 2, 2, 0, 0, 1, 2, 1, 1, 2, 0, 0, 0, 0, 1, 2, 1, 2, 3, 0, 0, 1, 2, 1, 1, 2, 0, 0, 0, 1, 2, 1, 2, 2, 0, 0, 1, 2, 1, 1, 2, 0, 0, 0, 0, 0, 1, 2, 1, 2, 3, 1, 0, 1, 2, 1, 1, 2, 0, 0, 0, 1, 2, 1, 2, 2, 0, 0, 1, 2, 1, 1, 2, 0, 0, 0, 0, 1, 2, 1, 2, 3, 0
Offset: 1

Views

Author

Vladimir Shevelev, Mar 19 2012

Keywords

Comments

Using induction, one can prove that the sequence takes only the values 0, 1, 2, and 3. - Vladimir Shevelev, Mar 28 2012

Examples

			Let n = 36. Up to m = 30, the maximal n contained in the interval (A007814(m!), A007814(m!) + A007814(m)] is 27. Evidently, it is sufficient to consider even numbers m. For m = 32, 34, 36, 38, and 40, we have the intervals (31, 36], (32, 33], (34, 36], (35, 36], and (38, 41], respectively. Thus, 36 occurs 3 times, and a(36) = 3.
		

Crossrefs

Programs

  • Mathematica
    Map[Count[Flatten[Map[Rest[Apply[Range,#]]&, Map[{IntegerExponent[#!,2], IntegerExponent[#!,2] + IntegerExponent[#,2]}&, Range[2,110,2]]]],#]&, Range[100]] (* Peter J. C. Moses, Mar 27 2012 *)
  • PARI
    list(N)=my(v=vector(N),t,n,s);while((s+=t=valuation(n++,2))<=N,for(i=s+1,min(s+t,N),v[i]++));v \\ Charles R Greathouse IV, Mar 28 2012

Formula

For k >= 1, a(2^k) = 1 and a(2^k-1) = 0; for k >= 2, a(2^k+1) = 2; for k >= 5, a(2^k+4) = 3.
One can prove many formulas of the following type: a(h - A000120(h) + 5) = 2, if A007814(h) = 3 or 4, and a(h - A000120(h) + 5) = 3, if A007814(h) >= 5. - Vladimir Shevelev, Mar 28 2012