cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210256 Differences of the sum of distinct values of {floor(n/k), k=1,...,n}.

Original entry on oeis.org

2, 1, 3, 1, 4, 1, 2, 4, 2, 1, 6, 1, 2, 2, 6, 1, 3, 1, 7, 2, 2, 1, 4, 6, 2, 2, 3, 1, 9, 1, 3, 2, 2, 2, 10, 1, 2, 2, 4, 1, 10, 1, 3, 3, 2, 1, 5, 8, 3, 2, 3, 1, 4, 2, 11, 2, 2, 1, 6, 1, 2, 3, 11, 2, 4, 1, 3, 2, 4, 1, 14, 1, 2, 3, 3, 2, 4, 1, 5, 11, 2, 1, 6, 2, 2
Offset: 1

Views

Author

John W. Layman, Mar 19 2012

Keywords

Comments

Differences of A051201.
It appears that a(n)=1 if and only if n>1 and n+1 is a prime. For example, the indices where 1 occurs in {a(n)} are {2,4,6,10,12,16,...}. Adding 1 to each of these gives {3,5,7,11,13,17,...} each of which is a prime.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; add(i, i={seq(floor(n/k), k=1..n)}) end:
    a:= n-> b(n+1)-b(n):
    seq(a(n), n=1..150); # Alois P. Heinz, Mar 19 2012
  • Mathematica
    b[n_] := b[n] = Total@ Union@ Table[Floor[n/k], {k, 1, n}];
    a[n_] := b[n+1] - b[n];
    Array[a, 150] (* Jean-François Alcover, Nov 20 2020, after Alois P. Heinz *)
  • Python
    from math import isqrt
    def A210256(n): return ((m:=isqrt((n+1<<2)+1)+1>>1)*(m-1)>>1)+sum((n+1)//k for k in range(1,(n+1)//m+1))-((r:=isqrt((n<<2)+1)+1>>1)*(r-1)>>1)-sum(n//k for k in range(1,n//r+1)) # Chai Wah Wu, Oct 31 2023