A210340 Generalized Woodall primes: any primes that can be written in the form n*b^n - 1 with n+2 > b > 2.
17, 191, 4373, 5119, 524287, 590489, 3124999, 14680063, 3758096383, 6973568801, 34867844009, 85449218749, 824633720831, 1099999999999, 1618481116086271, 11577835060199423, 14999999999999999, 29311444762388081, 73123168801259519
Offset: 1
Keywords
Examples
167*2^668 - 1 is a prime number and 167*2^668 - 1 = 167*16^167 - 1, so this number is in the sequence.
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 1..170
- Chris Caldwell, The Top 20 Generalized Woodall Primes
- Chris Caldwell, The Prime Glossary, Woodall prime
- G. L. Honaker, Jr. and Chris Caldwell, 17962...40287 (1006-digits)
- G. L. Honaker, Jr. and Chris Caldwell, 19981...99999 (10028-digits)
- PrimeGrid, Home Page
- Wikipedia, Woodall number
Programs
-
Mathematica
lst = {}; Do[p = n*b^n - 1; If[p < 10^200 && PrimeQ[p], AppendTo[lst, p]], {b, 3, 100}, {n, b - 1, 413}]; Sort@lst