A210379 Number of 2 X 2 matrices with all terms in {0,1,...,n} and odd trace.
0, 8, 36, 128, 300, 648, 1176, 2048, 3240, 5000, 7260, 10368, 14196, 19208, 25200, 32768, 41616, 52488, 64980, 80000, 97020, 117128, 139656, 165888, 195000, 228488, 265356, 307328, 353220, 405000, 461280, 524288, 592416, 668168
Offset: 0
Keywords
Examples
Writing the matrices as 4-letter words, the 8 for n=1 are as follows: 1000, 1100, 1010, 1110, 0001, 0011, 0101, 0111
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (2, 2, -6, 0, 6, -2, -2, 1).
Programs
-
Mathematica
a = 0; b = n; z1 = 35; t[n_] := t[n] = Flatten[Table[w + z, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]] c[n_, k_] := c[n, k] = Count[t[n], k] u[n_] := Sum[c[n, 2 k], {k, 0, 2*n}] v[n_] := Sum[c[n, 2 k - 1], {k, 1, 2*n - 1}] Table[u[n], {n, 0, z1}] (* A210378 *) Table[v[n], {n, 0, z1}] (* A210379 *)
Formula
a(n) + A210378(n) = (n+1)^4.
From Chai Wah Wu, Nov 27 2016: (Start)
a(n) = (n + 1)^2*((n + 1)^2 - (2*n + 1 -(-1)^n)^2/16 - (2*n + 3 + (-1)^n)^2/16).
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n > 7.
G.f.: -4*x*(2*x^4 + 5*x^3 + 10*x^2 + 5*x + 2)/((x - 1)^5*(x + 1)^3). (End)
From Amiram Eldar, Mar 15 2024: (Start)
a(n) = (n+1)^2*floor((n+1)^2/2).
Sum_{n>=1} 1/a(n) = Pi^4/720 + (10-Pi^2)/4. (End)