cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A210000 Number of unimodular 2 X 2 matrices having all terms in {0,1,...,n}.

Original entry on oeis.org

0, 6, 14, 30, 46, 78, 94, 142, 174, 222, 254, 334, 366, 462, 510, 574, 638, 766, 814, 958, 1022, 1118, 1198, 1374, 1438, 1598, 1694, 1838, 1934, 2158, 2222, 2462, 2590, 2750, 2878, 3070, 3166, 3454, 3598, 3790, 3918, 4238, 4334, 4670, 4830
Offset: 0

Views

Author

Clark Kimberling, Mar 16 2012

Keywords

Comments

a(n) is the number of 2 X 2 matrices having all terms in {0,1,...,n} and inverses with all terms integers.
Most sequences in the following guide count 2 X 2 matrices having all terms contained in the domain shown in column 2 and determinant d or permanent p or sum s of terms as indicated in column 3.
A059306 ... {0,1,...,n} ..... d=0
A171503 ... {0,1,...,n} ..... d=1
A210000 ... {0,1,...,n} .... |d|=1
A209973 ... {0,1,...,n} ..... d=2
A209975 ... {0,1,...,n} ..... d=3
A209976 ... {0,1,...,n} ..... d=4
A209977 ... {0,1,...,n} ..... d=5
A210282 ... {0,1,...,n} ..... d=n
A210283 ... {0,1,...,n} ..... d=n-1
A210284 ... {0,1,...,n} ..... d=n+1
A210285 ... {0,1,...,n} ..... d=floor(n/2)
A210286 ... {0,1,...,n} ..... d=trace
A280588 ... {0,1,...,n} ..... d=s
A106634 ... {0,1,...,n} ..... p=n
A210288 ... {0,1,...,n} ..... p=trace
A210289 ... {0,1,...,n} ..... p=(trace)^2
A280934 ... {0,1,...,n} ..... p=s
A210290 ... {0,1,...,n} ..... d>=0
A183761 ... {0,1,...,n} ..... d>0
A210291 ... {0,1,...,n} ..... d>n
A210366 ... {0,1,...,n} ..... d>=n
A210367 ... {0,1,...,n} ..... d>=2n
A210368 ... {0,1,...,n} ..... d>=3n
A210369 ... {0,1,...,n} ..... d is even
A210370 ... {0,1,...,n} ..... d is odd
A210371 ... {0,1,...,n} ..... d is even and >=0
A210372 ... {0,1,...,n} ..... d is even and >0
A210373 ... {0,1,...,n} ..... d is odd and >0
A210374 ... {0,1,...,n} ..... s=n+2
A210375 ... {0,1,...,n} ..... s=n+3
A210376 ... {0,1,...,n} ..... s=n+4
A210377 ... {0,1,...,n} ..... s=n+5
A210378 ... {0,1,...,n} ..... t is even
A210379 ... {0,1,...,n} ..... t is odd
A211031 ... {0,1,...,n} ..... d is in [-n,n]
A211032 ... {0,1,...,n} ..... d is in (-n,n)
A211033 ... {0,1,...,n} ..... d=0 (mod 3)
A211034 ... {0,1,...,n} ..... d=1 (mod 3)
A134506 ... {1,2,...,n} ..... d=0
A196227 ... {1,2,...,n} ..... d=1
A209979 ... {1,2,...,n} .... |d|=1
A197168 ... {1,2,...,n} ..... d=2
A210001 ... {1,2,...,n} ..... d=3
A210002 ... {1,2,...,n} ..... d=4
A210027 ... {1,2,...,n} ..... d=5
A211053 ... {1,2,...,n} ..... d=n
A211054 ... {1,2,...,n} ..... d=n-1
A211055 ... {1,2,...,n} ..... d=n+1
A055507 ... {1,2,...,n} ..... p=n
A211057 ... {1,2,...,n} ..... d is in [0,n]
A211058 ... {1,2,...,n} ..... d>=0
A211059 ... {1,2,...,n} ..... d>0
A211060 ... {1,2,...,n} ..... d>n
A211061 ... {1,2,...,n} ..... d>=n
A211062 ... {1,2,...,n} ..... d>=2n
A211063 ... {1,2,...,n} ..... d>=3n
A211064 ... {1,2,...,n} ..... d is even
A211065 ... {1,2,...,n} ..... d is odd
A211066 ... {1,2,...,n} ..... d is even and >=0
A211067 ... {1,2,...,n} ..... d is even and >0
A211068 ... {1,2,...,n} ..... d is odd and >0
A209981 ... {-n,....,n} ..... d=0
A209982 ... {-n,....,n} ..... d=1
A209984 ... {-n,....,n} ..... d=2
A209986 ... {-n,....,n} ..... d=3
A209988 ... {-n,....,n} ..... d=4
A209990 ... {-n,....,n} ..... d=5
A211140 ... {-n,....,n} ..... d=n
A211141 ... {-n,....,n} ..... d=n-1
A211142 ... {-n,....,n} ..... d=n+1
A211143 ... {-n,....,n} ..... d=n^2
A211140 ... {-n,....,n} ..... p=n
A211145 ... {-n,....,n} ..... p=trace
A211146 ... {-n,....,n} ..... d in [0,n]
A211147 ... {-n,....,n} ..... d>=0
A211148 ... {-n,....,n} ..... d>0
A211149 ... {-n,....,n} ..... d<0 or d>0
A211150 ... {-n,....,n} ..... d>n
A211151 ... {-n,....,n} ..... d>=n
A211152 ... {-n,....,n} ..... d>=2n
A211153 ... {-n,....,n} ..... d>=3n
A211154 ... {-n,....,n} ..... d is even
A211155 ... {-n,....,n} ..... d is odd
A211156 ... {-n,....,n} ..... d is even and >=0
A211157 ... {-n,....,n} ..... d is even and >0
A211158 ... {-n,....,n} ..... d is odd and >0

Examples

			a(2)=6 counts these matrices (using reduced matrix notation):
(1,0,0,1), determinant = 1, inverse = (1,0,0,1)
(1,0,1,1), determinant = 1, inverse = (1,0,-1,1)
(1,1,0,1), determinant = 1, inverse = (1,-1,0,1)
(0,1,1,0), determinant = -1, inverse = (0,1,1,0)
(0,1,1,1), determinant = -1, inverse = (-1,1,1,0)
(1,1,1,0), determinant = -1, inverse = (0,1,1,-1)
		

Crossrefs

Cf. A171503.
See also the very useful list of cross-references in the Comments section.

Programs

  • Mathematica
    a = 0; b = n; z1 = 50;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, 0], {n, 0, z1}]  (* A059306 *)
    Table[c[n, 1], {n, 0, z1}]  (* A171503 *)
    2 %                         (* A210000 *)
    Table[c[n, 2], {n, 0, z1}]  (* A209973 *)
    %/4                         (* A209974 *)
    Table[c[n, 3], {n, 0, z1}]  (* A209975 *)
    Table[c[n, 4], {n, 0, z1}]  (* A209976 *)
    Table[c[n, 5], {n, 0, z1}]  (* A209977 *)

Formula

a(n) = 2*A171503(n).

Extensions

A209982 added to list in comment by Chai Wah Wu, Nov 27 2016

A210378 Number of 2 X 2 matrices with all terms in {0,1,...,n} and even trace.

Original entry on oeis.org

1, 8, 45, 128, 325, 648, 1225, 2048, 3321, 5000, 7381, 10368, 14365, 19208, 25425, 32768, 41905, 52488, 65341, 80000, 97461, 117128, 140185, 165888, 195625, 228488, 266085, 307328, 354061, 405000, 462241, 524288, 593505, 668168, 750925, 839808, 937765, 1042568
Offset: 0

Views

Author

Clark Kimberling, Mar 20 2012

Keywords

Examples

			Writing the matrices as 4-letter words, the 8 for n=1 are as follows:
0000, 0100, 0010, 0110, 1001, 1101, 1011, 1111
		

Crossrefs

See A210000 for a guide to related sequences.

Programs

  • Mathematica
    a = 0; b = n; z1 = 35;
    t[n_] := t[n] = Flatten[Table[w + z, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    u[n_] := Sum[c[n, 2 k], {k, 0, 2*n}]
    v[n_] := Sum[c[n, 2 k - 1], {k, 1, 2*n - 1}]
    Table[u[n], {n, 0, z1}] (* A210378 *)
    Table[v[n], {n, 0, z1}] (* A210379 *)

Formula

a(n) + A210379(n) = (n+1)^4.
From Chai Wah Wu, Nov 27 2016: (Start)
a(n) = (n + 1)^2*((2*n + 1 -(-1)^n)^2 + (2*n + 3 + (-1)^n)^2)/16.
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n > 7.
G.f.: (-x^6 - 6*x^5 - 27*x^4 - 28*x^3 - 27*x^2 - 6*x - 1)/((x - 1)^5*(x + 1)^3). (End)
From Amiram Eldar, Mar 15 2024: (Start)
a(n) = (n+1)^2*floor(((n+1)^2+1)/2).
Sum_{n>=0} 1/a(n) = Pi^4/720 + (Pi-2*tanh(Pi/2))*Pi/4. (End)
E.g.f.: ((2 + 15*x + 26*x^2 + 10*x^3 + x^4)*cosh(x) + (1 + 18*x + 25*x^2 + 10*x^3 + x^4)*sinh(x))/2. - Stefano Spezia, Jul 15 2024

A279905 Number of 2 X 2 matrices with entries in {0,1,...,n} and odd trace with no elements repeated.

Original entry on oeis.org

0, 0, 0, 16, 72, 216, 480, 960, 1680, 2800, 4320, 6480, 9240, 12936, 17472, 23296, 30240, 38880, 48960, 61200, 75240, 91960, 110880, 133056, 157872, 186576, 218400, 254800, 294840, 340200, 389760, 445440, 505920, 573376, 646272, 727056, 813960, 909720
Offset: 0

Views

Author

Indranil Ghosh, Dec 26 2016

Keywords

Crossrefs

Cf. A210379 (where all elements can be repeated).

Programs

  • Mathematica
    LinearRecurrence[{2,2,-6,0,6,-2,-2,1}, {0,0,0,16,72,216,480,960}, 50] (* G. C. Greubel, Dec 26 2016 *)
  • PARI
    concat(vector(3), Vec(8*x^3*(2 + 5*x + 5*x^2) / ((1 - x)^5*(1 + x)^3) + O(x^50))) \\ Colin Barker, Dec 26 2016
    
  • PARI
    concat([0,0,0], Vec(8*x^3*(2 + 5*x + 5*x^2) / ((1 - x)^5*(1 + x)^3) + O(x^50))) \\ G. C. Greubel, Dec 26 2016
  • Python
    def a(n):
        s=0
        for a in range(0,n+1):
            for b in range(0,n+1):
                if a!=b:
                    for c in range(0,n+1):
                        if a!=c and b!=c:
                            for d in range(0,n+1):
                                if d!=a and d!=b and d!=c:
                                    if (a+d)%2==1:
                                        s+=1
        return s
    print([a(n) for n in range(41)])
    
  • Python
    def a(n):
        return ((n-3)*(n-2)*(2*n**2+(-1)**n-1))//4
    

Formula

a(n) = ((n-2)*(n-1)*(2*(n+1)^2-(-1)^n-1))/4 for n>=0 .
From Colin Barker, Dec 26 2016: (Start)
a(n) = (n^4 - n^3 - 4*n^2 + 4*n)/2 for n even.
a(n) = (n^4 - n^3 - 3*n^2 + n + 2)/2 for n odd.
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n>7.
G.f.: 8*x^3*(2 + 5*x + 5*x^2) / ((1 - x)^5*(1 + x)^3).
(End)
E.g.f.: (1/4)*((-2 - 2*x - x^2)*exp(-x) + (2 -2*x + x^2 + 10*x^3 + 2*x^4 )*exp(x)). - G. C. Greubel, Dec 26 2016
Showing 1-3 of 3 results.