A210000
Number of unimodular 2 X 2 matrices having all terms in {0,1,...,n}.
Original entry on oeis.org
0, 6, 14, 30, 46, 78, 94, 142, 174, 222, 254, 334, 366, 462, 510, 574, 638, 766, 814, 958, 1022, 1118, 1198, 1374, 1438, 1598, 1694, 1838, 1934, 2158, 2222, 2462, 2590, 2750, 2878, 3070, 3166, 3454, 3598, 3790, 3918, 4238, 4334, 4670, 4830
Offset: 0
a(2)=6 counts these matrices (using reduced matrix notation):
(1,0,0,1), determinant = 1, inverse = (1,0,0,1)
(1,0,1,1), determinant = 1, inverse = (1,0,-1,1)
(1,1,0,1), determinant = 1, inverse = (1,-1,0,1)
(0,1,1,0), determinant = -1, inverse = (0,1,1,0)
(0,1,1,1), determinant = -1, inverse = (-1,1,1,0)
(1,1,1,0), determinant = -1, inverse = (0,1,1,-1)
See also the very useful list of cross-references in the Comments section.
-
a = 0; b = n; z1 = 50;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, 0], {n, 0, z1}] (* A059306 *)
Table[c[n, 1], {n, 0, z1}] (* A171503 *)
2 % (* A210000 *)
Table[c[n, 2], {n, 0, z1}] (* A209973 *)
%/4 (* A209974 *)
Table[c[n, 3], {n, 0, z1}] (* A209975 *)
Table[c[n, 4], {n, 0, z1}] (* A209976 *)
Table[c[n, 5], {n, 0, z1}] (* A209977 *)
A210378
Number of 2 X 2 matrices with all terms in {0,1,...,n} and even trace.
Original entry on oeis.org
1, 8, 45, 128, 325, 648, 1225, 2048, 3321, 5000, 7381, 10368, 14365, 19208, 25425, 32768, 41905, 52488, 65341, 80000, 97461, 117128, 140185, 165888, 195625, 228488, 266085, 307328, 354061, 405000, 462241, 524288, 593505, 668168, 750925, 839808, 937765, 1042568
Offset: 0
Writing the matrices as 4-letter words, the 8 for n=1 are as follows:
0000, 0100, 0010, 0110, 1001, 1101, 1011, 1111
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1).
See
A210000 for a guide to related sequences.
-
a = 0; b = n; z1 = 35;
t[n_] := t[n] = Flatten[Table[w + z, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := Sum[c[n, 2 k], {k, 0, 2*n}]
v[n_] := Sum[c[n, 2 k - 1], {k, 1, 2*n - 1}]
Table[u[n], {n, 0, z1}] (* A210378 *)
Table[v[n], {n, 0, z1}] (* A210379 *)
A279905
Number of 2 X 2 matrices with entries in {0,1,...,n} and odd trace with no elements repeated.
Original entry on oeis.org
0, 0, 0, 16, 72, 216, 480, 960, 1680, 2800, 4320, 6480, 9240, 12936, 17472, 23296, 30240, 38880, 48960, 61200, 75240, 91960, 110880, 133056, 157872, 186576, 218400, 254800, 294840, 340200, 389760, 445440, 505920, 573376, 646272, 727056, 813960, 909720
Offset: 0
- Indranil Ghosh, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1).
Cf.
A210379 (where all elements can be repeated).
-
LinearRecurrence[{2,2,-6,0,6,-2,-2,1}, {0,0,0,16,72,216,480,960}, 50] (* G. C. Greubel, Dec 26 2016 *)
-
concat(vector(3), Vec(8*x^3*(2 + 5*x + 5*x^2) / ((1 - x)^5*(1 + x)^3) + O(x^50))) \\ Colin Barker, Dec 26 2016
-
concat([0,0,0], Vec(8*x^3*(2 + 5*x + 5*x^2) / ((1 - x)^5*(1 + x)^3) + O(x^50))) \\ G. C. Greubel, Dec 26 2016
-
def a(n):
s=0
for a in range(0,n+1):
for b in range(0,n+1):
if a!=b:
for c in range(0,n+1):
if a!=c and b!=c:
for d in range(0,n+1):
if d!=a and d!=b and d!=c:
if (a+d)%2==1:
s+=1
return s
print([a(n) for n in range(41)])
-
def a(n):
return ((n-3)*(n-2)*(2*n**2+(-1)**n-1))//4
Showing 1-3 of 3 results.
Comments