A210000
Number of unimodular 2 X 2 matrices having all terms in {0,1,...,n}.
Original entry on oeis.org
0, 6, 14, 30, 46, 78, 94, 142, 174, 222, 254, 334, 366, 462, 510, 574, 638, 766, 814, 958, 1022, 1118, 1198, 1374, 1438, 1598, 1694, 1838, 1934, 2158, 2222, 2462, 2590, 2750, 2878, 3070, 3166, 3454, 3598, 3790, 3918, 4238, 4334, 4670, 4830
Offset: 0
a(2)=6 counts these matrices (using reduced matrix notation):
(1,0,0,1), determinant = 1, inverse = (1,0,0,1)
(1,0,1,1), determinant = 1, inverse = (1,0,-1,1)
(1,1,0,1), determinant = 1, inverse = (1,-1,0,1)
(0,1,1,0), determinant = -1, inverse = (0,1,1,0)
(0,1,1,1), determinant = -1, inverse = (-1,1,1,0)
(1,1,1,0), determinant = -1, inverse = (0,1,1,-1)
See also the very useful list of cross-references in the Comments section.
-
a = 0; b = n; z1 = 50;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, 0], {n, 0, z1}] (* A059306 *)
Table[c[n, 1], {n, 0, z1}] (* A171503 *)
2 % (* A210000 *)
Table[c[n, 2], {n, 0, z1}] (* A209973 *)
%/4 (* A209974 *)
Table[c[n, 3], {n, 0, z1}] (* A209975 *)
Table[c[n, 4], {n, 0, z1}] (* A209976 *)
Table[c[n, 5], {n, 0, z1}] (* A209977 *)
A317614
a(n) = (1/2)*(n^3 + n*(n mod 2)).
Original entry on oeis.org
1, 4, 15, 32, 65, 108, 175, 256, 369, 500, 671, 864, 1105, 1372, 1695, 2048, 2465, 2916, 3439, 4000, 4641, 5324, 6095, 6912, 7825, 8788, 9855, 10976, 12209, 13500, 14911, 16384, 17985, 19652, 21455, 23328, 25345, 27436, 29679, 32000, 34481, 37044, 39775, 42592
Offset: 1
For n = 1 the matrix M(1) is
1
with trace Tr(M(1)) = a(1) = 1.
For n = 2 the matrix M(2) is
1, 2
4, 3
with Tr(M(2)) = a(2) = 4.
For n = 3 the matrix M(3) is
1, 2, 3
6, 5, 4
7, 8, 9
with Tr(M(3)) = a(3) = 15.
- Edward A. Ashcroft, Anthony A. Faustini, Rangaswami Jagannathan, and William W. Wadge, Multidimensional Programming, Oxford University Press 1995, p. 12.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 64.
- G. Polya, Mathematics and Plausible Reasoning: Induction and analogy in mathematics, Princeton University Press 1990, p. 118.
- Shailesh Shirali, A Primer on Number Sequences, Universities Press (India) 2004, p. 106.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Exercise 3.7.3 on pages 122-123.
- Stefano Spezia, Table of n, a(n) for n = 0..10000
- Alfred Moessner, Eine Bemerkung über die Potenzen der natürlichen Zahlen, München 1952. Sitzungsberichte: 1951,3.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
-
a_n:=List([1..nmax], n->(1/2)*(n^3 + n*RemInt(n, 2)));
-
List([1..50],n->(1/2)*(n^3+n*(n mod 2))); # Muniru A Asiru, Aug 24 2018
-
[IsEven(n) select n^3/2 else (n^3+n)/2: n in [1..50]]; // Vincenzo Librandi, Aug 07 2018
-
a:=n->(1/2)*(n^3+n*modp(n,2)): seq(a(n),n=1..50); # Muniru A Asiru, Aug 24 2018
-
CoefficientList[Series[1/4 E^-x (1 + 3 E^(2 x) + 6 E^(2 x) x + 2 E^(2 x) x^2), {x, 0, 45}], x]*Table[(k + 1)!, {k, 0, 45}]
CoefficientList[Series[-(1 + x^2)/((-1 + x)*(1 + x)^3), {x, 0, 45}], x]*Table[(k + 1)*(-1)^k, {k, 0, 45}]
CoefficientList[Series[-(1 + x^2)/((-1 + x)^3*(1 + x)), {x, 0, 45}], x]*Table[(k + 1), {k, 0, 45}]
From Robert G. Wilson v, Aug 01 2018: (Start)
a[i_, j_, n_] := If[OddQ@ i, j + n (i - 1), n*i - j + 1]; f[n_] := Tr[Table[a[i, j, n], {i, n}, {j, n}]]; Array[f, 45]
CoefficientList[Series[(x^4 + 2x^3 + 6x^2 + 2x + 1)/((x - 1)^4 (x + 1)^2), {x, 0, 45}], x]
LinearRecurrence[{2, 1, -4, 1, 2, -1}, {1, 4, 15, 32, 65, 108}, 45]
(End)
-
a(n):=(1/2)*(n^3 + n*mod(n,2))$ makelist(a(n), n, 1, nmax);
-
Vec(x*(1 + 2*x + 6*x^2 + 2*x^3 + x^4) / ((1 - x)^4*(1 + x)^2) + O(x^40)) \\ Colin Barker, Aug 02 2018
-
M(i, j, n) = if (i % 2, j + n*(i-1), n*i - j + 1);
a(n) = sum(k=1, n, M(k, k, n)); \\ Michel Marcus, Aug 07 2018
-
for (n in 1:nmax){
a <- (n^3+n*n%%2)/2
output <- c(n, a)
cat(output, "\n")
}
(MATLAB and FreeMat)
for(n=1:nmax); a=(n^3+n*mod(n,2))/2; fprintf('%d\t%0.f\n',n,a); end
A210379
Number of 2 X 2 matrices with all terms in {0,1,...,n} and odd trace.
Original entry on oeis.org
0, 8, 36, 128, 300, 648, 1176, 2048, 3240, 5000, 7260, 10368, 14196, 19208, 25200, 32768, 41616, 52488, 64980, 80000, 97020, 117128, 139656, 165888, 195000, 228488, 265356, 307328, 353220, 405000, 461280, 524288, 592416, 668168
Offset: 0
Writing the matrices as 4-letter words, the 8 for n=1 are as follows:
1000, 1100, 1010, 1110, 0001, 0011, 0101, 0111
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (2, 2, -6, 0, 6, -2, -2, 1).
See
A210000 for a guide to related sequences.
-
a = 0; b = n; z1 = 35;
t[n_] := t[n] = Flatten[Table[w + z, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := Sum[c[n, 2 k], {k, 0, 2*n}]
v[n_] := Sum[c[n, 2 k - 1], {k, 1, 2*n - 1}]
Table[u[n], {n, 0, z1}] (* A210378 *)
Table[v[n], {n, 0, z1}] (* A210379 *)
A280056
Number of 2 X 2 matrices with entries in {0,1,...,n} and even trace with no entries repeated.
Original entry on oeis.org
0, 0, 0, 8, 48, 144, 360, 720, 1344, 2240, 3600, 5400, 7920, 11088, 15288, 20384, 26880, 34560, 44064, 55080, 68400, 83600, 101640, 121968, 145728, 172224, 202800, 236600, 275184, 317520, 365400, 417600, 476160, 539648, 610368, 686664, 771120, 861840, 961704, 1068560, 1185600
Offset: 0
- Indranil Ghosh, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1).
Cf.
A210378 (where the elements can be repeated).
-
Table[(1/4)*(n - 2)*(n - 1)*(2*n^2 - 1 + (-1)^n), {n, 0, 50}] (* G. C. Greubel, Dec 26 2016 *)
-
concat(vector(3), Vec(8*x^3*(1 + 3*x)*(1 + x + x^2) / ((1 - x )^5*(1 + x)^3) + O(x^30))) \\ Colin Barker, Dec 25 2016
-
def a(n):
s=0
for a in range(0,n+1):
for b in range(0,n+1):
if a!=b:
for c in range(0,n+1):
if a!=c and b!=c:
for d in range(0,n+1):
if d!=a and d!=b and d!=c:
if (a+d)%2==0:
s+=1
return s
for i in range(0,41):
print(i, a(i))
-
def A280056(n):
return (n**2 - (n % 2))*(n-1)*(n-2)//2 # Chai Wah Wu, Dec 25 2016
Showing 1-4 of 4 results.
Comments