cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Saeed Barari

Saeed Barari's wiki page.

Saeed Barari has authored 1 sequences.

A350236 a(n) is the sum of the entries in an n X n X n 3D matrix whose elements start at 1 in the corner cells and increase by 1 with each step towards the center.

Original entry on oeis.org

1, 8, 54, 160, 425, 864, 1666, 2816, 4617, 7000, 10406, 14688, 20449, 27440, 36450, 47104, 60401, 75816, 94582, 116000, 141561, 170368, 204194, 241920, 285625, 333944, 389286, 450016, 518897, 594000, 678466, 770048, 872289, 982600, 1104950, 1236384, 1381321
Offset: 1

Author

Saeed Barari, Dec 21 2021

Keywords

Comments

The 2D version of this problem is discussed in A317614.

Examples

			For n=3: we have the following 3D matrix: (sliced for each Z surface)
(z=1): 1 2 1
       2 3 2
       1 2 1
(z=2): 2 3 2
       3 4 3
       2 3 2
(z=3): 1 2 1
       2 3 2
       1 2 1
The sum of all elements is: (3/4)*n^2 * (n^2 - 2/3*n + (n mod 2)) = 54.
		

Crossrefs

Cf. A317614.

Programs

  • Maple
    a:=n->(3/4)*n^2 * (n^2 - (2/3)*n + modp(n, 2)): seq(a(n), n=1..50);
  • Mathematica
    LinearRecurrence[{2,2,-6,0,6,-2,-2,1},{1,8,54,160,425,864,1666,2816},35] (* Stefano Spezia, May 19 2022 *)
  • Python
    for n in range(1, nmax):
      sum = round(3/4*n**2 * (n**2 - 2/3*n + n % 2))
      print(sum, end=', ')

Formula

a(n) = (3/4)*n^2 * (n^2 - 2/3*n + (n mod 2)).
From Stefano Spezia, May 19 2022: (Start)
O.g.f.: x*(1 + 6*x + 36*x^2 + 42*x^3 + 45*x^4 + 12*x^5 + 2*x^6)/((1 - x)^5*(1 + x)^3).
E.g.f.: x*((4 + 15*x + 16*x^2 + 3*x^3)*cosh(x) + (1 + 18*x + 16*x^2 + 3*x^3)*sinh(x))/4.
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5)- 2*a(n-6) - 2*a(n-7) + a(n-8) for n > 8. (End)

Extensions

Python program and a(23), a(34) corrected by Georg Fischer, Sep 30 2022