cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A374668 a(n) is the permanent of the n-th order Hankel matrix M whose generic element is given by M(i,j) = A317614(i+j-1) with i,j = 1, ..., n.

Original entry on oeis.org

1, 1, 31, 10254, 12238276, 41596930860, 309346186680924, 4522151204857137264, 116038936382978521700928, 4918677318766771695942334272, 323424014903141386787887115413440, 31725978444319999354629697685162941056, 4460612938377274751881312432310360618154240
Offset: 0

Views

Author

Stefano Spezia, Jul 15 2024

Keywords

Comments

The Hankel transform of A317614 has the following polynomial as g.f. 1 + x - x^2 - 624*x^3 - 9216*x^4 + 138240*x^5 - 331776*x^6: the matrices are singular for n > 6.

Examples

			a(7) = 4522151204857137264:
  [  1,   4,  15,  32,  65, 108,  175]
  [  4,  15,  32,  65, 108, 175,  256]
  [ 15,  32,  65, 108, 175, 256,  369]
  [ 32,  65, 108, 175, 256, 369,  500]
  [ 65, 108, 175, 256, 369, 500,  671]
  [108, 175, 256, 369, 500, 671,  864]
  [175, 256, 369, 500, 671, 864, 1105]
which is the singular matrix M of minimal order.
		

Crossrefs

Cf. A317614.
Cf. A000583 (trace of M), A006010 (sum of the 1st row or column of M), A035287 (super- or subdiagonal sum of M), A346174, A374708 (k-th super- or subdiagonal sum of M).

Programs

  • Mathematica
    A317614[n_]:=(1/2)*(n^3 + n*Mod[n,2]); a[n_]:=Permanent[Table[A317614[i+j-1], {i, n}, {j, n}]]; Join[{1}, Array[a, 12]]

A346174 Inverse binomial transform of A317614.

Original entry on oeis.org

0, 1, 6, 30, 120, 420, 1344, 4032, 11520, 31680, 84480, 219648, 559104, 1397760, 3440640, 8355840, 20054016, 47628288, 112066560, 261488640, 605552640, 1392771072, 3183476736, 7235174400, 16357785600, 36805017600, 82443239424, 183911841792, 408692981760, 904963031040
Offset: 0

Views

Author

Stefano Spezia, Jul 08 2021

Keywords

Crossrefs

Cf. A000079, A007531, A128789, A257872 (-8*log(2)), A317614.

Programs

  • Mathematica
    LinearRecurrence[{8,-24,32,-16},{0,1,6,30,120,420},30]

Formula

O.g.f.: x*(1 - 2*x + 6*x^2 - 8*x^3 + 4*x^4)/(1 - 2*x)^4.
E.g.f.: x*(1 + exp(2*x)*(3 + 6*x + 2*x^2))/4.
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4) for n > 5.
a(n) = 2^(n-4)*n*(n + 1)*(n + 2) with a(0) = 0 and a(1) = 1.
a(n) = A000079(n-4)*A007531(n+2) for n > 1.
a(n) ~ A128789(n)/16.
Sum_{n>0} 1/a(n) = 8*log(2) - 13/3 = 1.21184411114622914200452363833...

A381374 Little Hankel transform of A317614: a(n) = A317614(n+1)^2 - A317614(n)*A317614(n+2).

Original entry on oeis.org

1, 1, 97, 49, 769, 289, 2977, 961, 8161, 2401, 18241, 5041, 35617, 9409, 63169, 16129, 104257, 25921, 162721, 39601, 242881, 58081, 349537, 82369, 487969, 113569, 663937, 152881, 883681, 201601, 1153921, 261121, 1481857, 332929, 1875169, 418609, 2342017, 519841, 2891041
Offset: 1

Views

Author

Stefano Spezia, Feb 21 2025

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,5,0,-10,0,10,0,-5,0,1},{1,97,49,769,289,2977,961,8161,2401,18241},38]

Formula

a(n) = (10 + 6*(-1)^n + 4*n*(n + 2)*(3*(n + 1)^2 + (-1)^n*(2*n^2 + 4*n + 5)))/16.
a(n) = 5*a(n-2) - 10*a(n-4) + 10*a(n-6) - 5*a(n-8) + a(n-10) for n > 10.
G.f.: (1 + x + 92*x^2 + 44*x^3 + 294*x^4 + 54*x^5 + 92*x^6 - 4*x^7 + x^8 + x^9)/(1 - x^2)^5.
E.g.f.: ((4 + 3*x + 123*x^2 + 10*x^3 + 5*x^4)*cosh(x) + (1 + 69*x + 21*x^2 + 50*x^3 + x^4)*sinh(x))/4.
a(2*n) = A239607(n).

A322277 Permanent of an n X n square matrix M(n) formed by writing the numbers 1, ..., n^2 successively forward and backward along the rows in zig-zag pattern.

Original entry on oeis.org

1, 11, 490, 60916, 15745548, 7477647372, 5799397213200, 6925325038489152, 11958227405868674880, 28853103567727115409600, 93561657023119005869616000, 398720531811315564754326938880, 2174628314166392755825875267321600, 14941853448103858870808931238617312000
Offset: 1

Views

Author

Stefano Spezia, Dec 01 2018

Keywords

Comments

M(n) is defined as M[i,j,n] = j + n*(i-1) if i is odd and M[i,j,n] = n*i - j + 1 if i is even.
det(M(1)) = 1, det(M(2)) = -5 and det(M(n)) = 0 for n > 2 (proved).
The trace of the matrix M(n) is A317614(n).

Examples

			For n = 1 the matrix M(1) is
  1
with permanent a(1) = 1.
For n = 2 the matrix M(2) is
  1, 2
  4, 3
with permanent a(2) = 11.
For n = 3 the matrix M(3) is
  1, 2, 3
  6, 5, 4
  7, 8, 9
with permanent a(3) = 490.
		

Crossrefs

Cf. A317614 (trace of matrix M(n)).
Cf. A241016 (row sums of M matrices), A317617 (column sums of M matrices), A074147 (antidiagonals of M matrices).

Programs

  • Maple
    with(LinearAlgebra):
    a := n -> Permanent(Matrix(n, (i, j) -> 1-j+i*n+(-1+2*j-n)*modp(i,2))):
    seq(a(n), n = 1 .. 20);
  • Mathematica
    M[i_, j_, n_] := 1 - j + i n + (-1 + 2 j - n) Mod[i, 2]; a[n_] := Permanent[Table[M[i, j, n], {i, n}, {j, n}]]; Array[a, 20]
  • PARI
    a(n) = matpermanent(matrix(n, n, i, j, if (i % 2, j + n*(i-1), n*i - j + 1)));
    vector(20, n, a(n))

A317617 Triangle T read by rows: T(n, k) = (n^3 + n)/2 + (k - (n + 1)/2)*(n mod 2).

Original entry on oeis.org

1, 5, 5, 14, 15, 16, 34, 34, 34, 34, 63, 64, 65, 66, 67, 111, 111, 111, 111, 111, 111, 172, 173, 174, 175, 176, 177, 178, 260, 260, 260, 260, 260, 260, 260, 260, 365, 366, 367, 368, 369, 370, 371, 372, 373, 505, 505, 505, 505, 505, 505, 505, 505, 505, 505, 666
Offset: 1

Views

Author

Stefano Spezia, Aug 01 2018

Keywords

Comments

T(n, k) is the sum of the terms of the k-th column of an n X n square matrix M formed by writing the numbers 1, ..., n^2 successively forward and backward along the rows in zig-zag pattern (proved). The n X n square matrix M is defined as M[i, j, n] = j + n*(i - 1) if i is odd and M[i, j, n] = n*i - j + 1 if i is even (see the examples below).
The rows of even indices of the triangle T are made of all the same repeating number.

Examples

			n\k|   1   2   3   4   5   6
---+------------------------
1  |   1
2  |   5   5
3  |  14  15  16
4  |  34  34  34  34
5  |  63  64  65  66  67
6  | 111 111 111 111 111 111
...
For n = 1 the matrix M is
  1
with column sum 1.
For n = 2 the matrix M is
  1, 2
  4, 3
with column sums 5, 5.
For n = 3 the matrix M is
  1, 2, 3
  6, 5, 4
  7, 8, 9
with column sums 14, 15, 16.
		

Crossrefs

Cf. A006003, A000027, A000035, A037270 (row sums).
A317614(n): the trace of the n X n square matrix M.
A074147(n): the elements of the antidiagonal of the n X n square matrix M.
A241016(n): the triangle of the row sums of the n X n square matrix M.
A246697(n): the right diagonal of the triangle T.

Programs

  • GAP
    A317617 := function(n)
    local i, j, t;
    for i in [1 .. n] do
       for j in [1 .. i] do
          t := (i^3 + i)/2 + (j - (i + 1)/2)*(i mod 2);
          Print(t, "\t");
       od;
       Print("\n");
    od;
    end;
    A317617(11); # yields sequence in triangular form
    
  • GAP
    Flat(List([1..11],n->List([1..n],k->(n^3+n)/2+(k-(n+1)/2)*(n mod 2)))); # Muniru A Asiru, Aug 24 2018
  • Magma
    [[(n^3 + n)/2 + (k - (n + 1)/2)*(n mod 2): k in [1..n]]: n in [1..11]];
    
  • Maple
    a:=(n,k)->(n^3+n)/2+(k-(n+1)/2)*modp(n,2): seq(seq(a(n,k),k=1..n),n=1..11); # Muniru A Asiru, Aug 24 2018
  • Mathematica
    f[n_] := Table[SeriesCoefficient[(x*(x*(5 - 7*y) + x^4*(1 - 2*y) - x^3*(-3 + y) - 3*x^2*(-1 + y) + y))/((-1 + x)^4*(1 + x)^2*(-1 + y)^2), {x, 0, i}, {y, 0, j}], {i, n, n}, {j, 1, n}]; Flatten[Array[f, 11]]
    T[i_, j_, n_] := If[OddQ@ i, j + n*(i - 1), n*i - j + 1]; f[n_] := Plus @@@ Transpose[ Table[T[i, j, n], {i, n}, {j, n}]]; Array[f, 11] // Flatten  (* Robert G. Wilson v, Aug 01 2018 *)
    f[n_] := Table[SeriesCoefficient[1/4 E^(-x + y) (1 - x - 2 y + E^(2 x) (-1 + 3 x + 6 x^2 + 2 x^3 + 2 y)), {x, 0, i}, {y, 0, j}]*i!*j!, {i, n, n}, {j, 1, n}]; Flatten[Array[f, 11]] (* Stefano Spezia, Jan 10 2019 *)
  • Maxima
    sjoin(v, j) := apply(sconcat, rest(join(makelist(j, length(v)), v)))$ display_triangle(n) := for i from 1 thru n do disp(sjoin(makelist((i^3+i)/2+(j-(i+1)/2)*mod(i, 2), j, 1, i), " ")); display_triangle(10);
    
  • PARI
    M(i,j,n) = if (i % 2, j + n*(i-1), n*i - j + 1);
    T(n, k) = sum(i=1, n, M(i,k,n));
    tabl(nn) = for(n=1, nn, for(k=1, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Aug 09 2018
    
  • R
    # by formula
    for (n in 1:11){
       t <- c(n, "")
       for(j in 1:n){
          t <- c(t, (n^3+n)/2+(j-(n+1)/2)*(n%%2), "")
       }
       cat(t, "\n")
    } # yields sequence in triangular form
    (MATLAB and FreeMat)
    for(i=1:11);
       for(j=1:i);
          t=(i^3 + i)/2 + (j - (i + 1)/2)*mod(i,2);
          fprintf('%0.f\t', t);
       end
       fprintf('\n');
    end % yields sequence in triangular form
    

Formula

T(n, k) = A006003(n) + (k - (A000027(n) + 1)/2)*A000035(n).
G.f.: x*(x*(5 - 7*y) + x^4*(1 - 2*y) - x^3*(- 3 + y) - 3*x^2*(- 1 + y) + y)/((-1 + x)^4*(1 + x)^2*(-1 + y)^2).
E.g.f.: (1/4)*exp(-x + y)*(1 - x - 2*y + exp(2*x)*(-1 + 3*x + 6*x^2 + 2*x^3 + 2*y)). - Stefano Spezia, Jan 10 2019

A317297 a(n) = (n - 1)*(4*n^2 - 8*n + 5).

Original entry on oeis.org

0, 5, 34, 111, 260, 505, 870, 1379, 2056, 2925, 4010, 5335, 6924, 8801, 10990, 13515, 16400, 19669, 23346, 27455, 32020, 37065, 42614, 48691, 55320, 62525, 70330, 78759, 87836, 97585, 108030, 119195, 131104, 143781, 157250, 171535, 186660, 202649, 219526, 237315, 256040, 275725, 296394, 318071
Offset: 1

Views

Author

Omar E. Pol, Sep 01 2018

Keywords

Comments

Conjecture: For n > 1, a(n) is the maximum eigenvalue of a 2*(n-1) X 2*(n-1) square matrix M defined as M[i,j,n] = j + n*(i-1) if i is odd and M[i,j,n] = n*i - j + 1 if i is even (see A317614). - Stefano Spezia, Dec 27 2018
Connections can be made to A022144 and A010014. Namely, a formula for A022144 is (2*n+1)^2 - (2*n-1)^2. A formula for A010014 is (2*n+1)^3 - (2*n-1)^3. The general form can be represented by (2*n+1)^d - (2*n-1)^d, where d designates the number of dimensions. When d is 4, a(n) = ((2*(n-1)+1)^4 - (2*(n-1)-1)^4)/16, namely the general form shifted by 1 and divided by 16 is a(n). - Yigit Oktar, Aug 16 2024

Crossrefs

First bisection of A006003.
Nonzero terms give the row sums of A007607.
Conjecture: 0 together with a bisection of A246697.
Cf. A219086 (partial sums).
Cf. A010014, A022144 (see comments)

Programs

  • Mathematica
    Table[(n - 1) (4 n^2 - 8 n + 5), {n, 1, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 5, 34, 111}, 50] (* or *) CoefficientList[Series[x (5 + 14 x + 5 x^2)/(1 - x)^4, {x, 0, 50}], x] (* Stefano Spezia, Sep 01 2018 *)
  • PARI
    a(n) = (n - 1)*(4*n^2 - 8*n + 5)
    
  • PARI
    concat(0, Vec(x^2*(5 + 14*x + 5*x^2)/(1 - x)^4 + O(x^50))) \\ Colin Barker, Sep 01 2018

Formula

a(n) = 4*n^3 - 12*n^2 + 13*n - 5 = A033430(n) - A135453(n) + A008595(n) - 5.
G.f.: x^2*(5 + 14*x + 5*x^2)/(1 - x)^4. - Colin Barker, Sep 01 2018
a(n) = 4*a(n - 1) - 6*a(n - 2) + 4*a(n - 3) - a(n - 4) for n > 4. - Stefano Spezia, Sep 01 2018
E.g.f.: exp(x)*(5*x + 12*x^2 + 4*x^3). - Stefano Spezia, Jan 15 2019
a(n) = ((2*(n-1)+1)^4 - (2*(n-1)-1)^4)/16. - Yigit Oktar, Aug 16 2024

A323723 a(n) = (-2 - (-1)^n*(-2 + n) + n + 2*n^3)/4.

Original entry on oeis.org

0, 0, 4, 14, 32, 64, 108, 174, 256, 368, 500, 670, 864, 1104, 1372, 1694, 2048, 2464, 2916, 3438, 4000, 4640, 5324, 6094, 6912, 7824, 8788, 9854, 10976, 12208, 13500, 14910, 16384, 17984, 19652, 21454, 23328, 25344, 27436, 29678, 32000, 34480, 37044, 39774
Offset: 0

Views

Author

Stefano Spezia, Jan 25 2019

Keywords

Comments

For n > 1, a(n) is the subdiagonal sum of the matrix M(n) whose permanent is A322277(n).
All the terms of this sequence are even numbers (A005843).

Crossrefs

Programs

  • GAP
    Flat(List([0..50], n -> (-2-(-1)^n*(-2+n)+n+2*n^3)/4));
    
  • Magma
    [(-2-(-1)^n*(-2+n)+n+2*n^3)/4: n in [0..50]];
    
  • Maple
    a:=n->(-2 - (-1)^n*(-2 + n) + n + 2*n^3)/4: seq(a(n), n=0..50);
  • Mathematica
    a[n_]:=(6 + n + n^3 + 12 Floor[1/2 (-3 + n)] + 4 Floor[1/2 (-3 + n)]^2 - 2 (1 + n) Floor[1/2 (-1 + n)])/2; Array[a,50,0]
  • Maxima
    makelist((-2-(-1)^n*(-2+n)+n+2*n^3)/4, n, 0, 50);
    
  • PARI
    a(n) = (-2-(-1)^n*(-2+n)+n+2*n^3)/4;
    
  • Python
    [(-2-(-1)**n*(-2+n)+n+2*n**3)/4 for n in range(50)]

Formula

O.g.f.: 2*x^2*(2 + 3*x + x^3)/((1 - x)^4*(1 + x)^2).
E.g.f.: (1/4)*exp(-x)*(2 + x)*(1 + exp(2*x)*(-1 + 2*x + 2* x^2)).
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n > 5.
a(n) = (6 + n + n^3 + 12*floor((n - 3)/2) + 4*floor((n - 3)/2)^2 - 2*(1 + n)*floor((n - 1)/2))/2.
a(n) = (-2 - A033999(n)*(-2 + n) + n + A033431(n))/4.
a(n) = n^3/2 for even n; a(n) = (n - 1)*(n^2 + n + 2)/2 otherwise. - Bruno Berselli, Feb 06 2019
a(n) = 2*A004526(n*A000982(n)). [Found by Christian Krause's LODA miner] - Stefano Spezia, Dec 12 2021

A323724 a(n) = n*(2*(n - 2)*n + (-1)^n + 3)/4.

Original entry on oeis.org

0, 0, 2, 6, 20, 40, 78, 126, 200, 288, 410, 550, 732, 936, 1190, 1470, 1808, 2176, 2610, 3078, 3620, 4200, 4862, 5566, 6360, 7200, 8138, 9126, 10220, 11368, 12630, 13950, 15392, 16896, 18530, 20230, 22068, 23976, 26030, 28158, 30440, 32800, 35322, 37926, 40700
Offset: 0

Views

Author

Stefano Spezia, Jan 25 2019

Keywords

Comments

For n > 1, a(n) is the superdiagonal sum of the matrix M(n) whose permanent is A322277(n).
All the terms of this sequence are even numbers (A005843), but do not end with 4.

Crossrefs

Programs

  • GAP
    Flat(List([0..50], n->(1/2)*(-1 + n)^2*n - (-1 + n)*Int(n/2) + 2*(Int(n/2))^2));
    
  • Magma
    [(1/2)*(-1 + n)^2*n - (-1 + n)*Floor(n/2) + 2*(Floor(n/2))^2: n in [0..50]];
    
  • Maple
    a:=n->(1/2)*(-1 + n)^2*n - (-1 + n)*floor(n/2) + 2*(floor(n/2))^2: seq(a(n), n=0..50);
  • Mathematica
    a[n_] := 1/2 (-1 + n)^2 n - (-1 + n) Floor[n/2] + 2 Floor[n/2]^2; Array[a, 50, 0];
    Table[n (2 (n - 2) n + (-1)^n + 3)/4, {n, 0, 50}] (* Bruno Berselli, Feb 06 2019 *)
    LinearRecurrence[{2,1,-4,1,2,-1},{0,0,2,6,20,40},50] (* Harvey P. Dale, Jan 13 2024 *)
  • Maxima
    makelist((1/2)*(-1 + n)^2*n - (-1 + n)*floor(n/2) + 2*(floor(n/2))^2, n, 0, 50);
    
  • PARI
    a(n) = (1/2)*(-1 + n)^2*n - (-1 + n)*floor(n/2) + 2*(floor(n/2))^2;
    
  • PARI
    T(i,j,n) = if (i %2, j + n*(i-1), n*i - j + 1);
    a(n) = sum(k=1, n-1, T(k,k+1,n)); \\ Michel Marcus, Feb 06 2019
    
  • Python
    [int((1/2)*(-1 + n)**2*n - (-1 + n)*int(n/2) + 2*(int(n/2))**2) for n in range(0,50)]

Formula

O.g.f.: 2*x^2*(1 + x + 3*x^2 + x^3)/((1 - x)^4*(1 + x)^2).
E.g.f.: (1/2)*x*(exp(x)*x*(1 + x) + sinh(x)).
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n > 5.
a(n) = (1/2)*(-1 + n)^2*n - (-1 + n)*floor(n/2) + 2*floor(n/2)^2.
a(n) = (1/2)*(-1 + n)^2*n - (-1 + n)*A004526(n) + 2*A000290(A004526(n)).
a(n) = (n/2)*((n - 1)^2 + 1) for even n; a(n) = (n/2)*(n - 1)^2 otherwise. - Bruno Berselli, Feb 06 2019
a(n) = 2*A004526(n*A000982(n-1)). [Found by Christian Krause's LODA miner] - Stefano Spezia, Dec 12 2021
a(n) = 2*A005997(n-1) for n >= 2. - Hugo Pfoertner, Dec 13 2021

Extensions

Definition by Bruno Berselli, Feb 06 2019

A006010 Number of paraffins (see Losanitsch reference for precise definition).

Original entry on oeis.org

1, 5, 20, 52, 117, 225, 400, 656, 1025, 1525, 2196, 3060, 4165, 5537, 7232, 9280, 11745, 14661, 18100, 22100, 26741, 32065, 38160, 45072, 52897, 61685, 71540, 82516, 94725, 108225, 123136, 139520, 157505, 177157, 198612, 221940, 247285, 274721, 304400
Offset: 1

Views

Author

Keywords

Comments

This is also the square of the sum of the odd numbers plus the square of the sum of the even numbers, up to n. E.g., a(4) = (1+3)^2 + (2+4)^2 = 52. - Scott R. Shannon, Feb 20 2019
The area of a square whose side is a segment connecting the ends of a broken line (snake), the adjacent links of which are perpendicular and equal to the numbers 1, 2, 3, 4, ..., n. For example, a(5) = 9^2 + 6^2 = 117. - Nicolay Avilov, Aug 02 2022

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005994, A186424 (2nd differences), A317614 (1st differences), A335648 (partial sums).

Programs

  • Mathematica
    CoefficientList[Series[-(x^4 + 2 x^3 + 6 x^2 + 2 x + 1)/((x - 1)^5 (x + 1)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 14 2013 *)
    LinearRecurrence[{3,-1,-5,5,1,-3,1},{1,5,20,52,117,225,400},40] (* Harvey P. Dale, Dec 13 2018 *)
  • PARI
    Vec(-x*(x^4+2*x^3+6*x^2+2*x+1)/((x-1)^5*(x+1)^2) + O(x^100)) \\ Colin Barker, Oct 05 2015

Formula

Sum of [ 1, 3, 9, ... ](A005994) + [ 0, 0, 1, 3, 9, ... ] + 2*[ 0, 1, 5, 15, 35, ... ](binomial(n, 4)).
If n is odd then a(n) = (1/8) * (n^4 + 2*n^3 + 2*n^2 + 2*n + 1) = Det(Transpose[M]*M) where M is the 2 X 3 matrix whose rows are [(n-1)/2, (n-1)/2], [(n-1)/2 + 1, 0] and [(n-1)/2 + 1, (n-1)/2 + 1]. If n is even then a(n) = (1/8) * (n^4 + 2*n^3 + 2*n^2) = Det(Transpose[M]*M) where M is the 2 X 3 matrix whose rows are [n/2, 0], [n/2, n/2] and [n/2 + 1, 0]. - Gerald McGarvey, Oct 30 2007
G.f.: -x*(x^4+2*x^3+6*x^2+2*x+1) / ((x-1)^5*(x+1)^2). - Colin Barker, Mar 20 2013
E.g.f.: (x*(7 + 15*x + 8*x^2 + x^3)*cosh(x) + (1 + 5*x + 15*x^2 + 8*x^3 + x^4)*sinh(x))/8. - Stefano Spezia, Jul 08 2020

Extensions

More terms from David W. Wilson

A325516 Triangle read by rows: T(n, k) = (1/4)*n*(1 - (-1)^(n - k) + 2*(n - k)^2), with 0 <= k < n.

Original entry on oeis.org

1, 4, 2, 15, 6, 3, 32, 20, 8, 4, 65, 40, 25, 10, 5, 108, 78, 48, 30, 12, 6, 175, 126, 91, 56, 35, 14, 7, 256, 200, 144, 104, 64, 40, 16, 8, 369, 288, 225, 162, 117, 72, 45, 18, 9, 500, 410, 320, 250, 180, 130, 80, 50, 20, 10, 671, 550, 451, 352, 275, 198, 143, 88, 55, 22, 11
Offset: 1

Views

Author

Stefano Spezia, May 07 2019

Keywords

Comments

T(n, k) is the k-superdiagonal sum of the matrix M(n) whose permanent is A322277(n).

Examples

			The triangle T(n, k) begins:
---+------------------------------
n\k|    0     1     2     3     4
---+------------------------------
1  |    1
2  |    4     2
3  |   15     6     3
4  |   32    20     8     4
5  |   65    40    25    10     5
...
For n = 3 the matrix M(3) is
1, 2, 3
6, 5, 4
7, 8, 9
and therefore T(3, 0) = 1 + 5 + 9 = 15, T(3, 1) = 2 + 4 = 6, and T(3, 2) = 3.
		

Crossrefs

Cf. A000027, A317614, A322277, A325517 (row sums).

Programs

  • GAP
    Flat(List([1..11], n->List([0..n-1], k->(1/4)*n*(1 - (-1)^(n - k) + 2*(n - k)^2))));
    
  • Magma
    [[(1/4)*n*(1 - (-1)^(n - k) + 2*(n - k)^2): k in [0..n-1]]: n in [1..11]];
    
  • Maple
    a:=(n, k)->(1/4)*n*(1 - (-1)^(n - k) + 2*(n - k)^2): seq(seq(a(n, k), k=0..n-1), n=1..11);
  • Mathematica
    T[n_,k_] := (1/4) n (1 - (-1)^(n - k) + 2 (n - k)^2); Flatten[Table[T[n, k], {n, 1, 11}, {k, 0, n - 1}]]
  • PARI
    T(n, k) = (1/4)*n*(1 - (-1)^(n - k) + 2*(n - k)^2);
    tabl(nn) = for(n=1, nn, for(k=0, n-1, print1(T(n, k), ", ")); print);
    tabl(11) \\ yields sequence in triangular form

Formula

O.g.f.: x*(1 - 2*y + y^2 + 2*y^3 + x^4*(1 + y^2) + 2*x^3*(1 + y - 3*y^2 + y^3) + 2*x^2*(3 - 5*y - y^2 + y^3) + x*(2 - 2*y - 6*y^2 + 6*y^3))/((1 - x)^4*(1 + x)^2*(1 - y)^3*(1 + y)).
E.g.f.: (1/4)*exp(-x - y)*(x + exp(2*(x + y))*x*(3 + 2*x^2 + x*(6 - 4*y) - 2*y + 2*y^2)).
T(n, k) = n*(n - k)^2/2 if n and k are both even or odd; T(n, k) = n*(n - k)^2/2 + n/2 otherwise.
1st column: T(n, 1) = A317614(n).
Diagonal: T(n, n-1) = n.
Showing 1-10 of 23 results. Next