A210443 G.f.: Sum_{n>=0} x^n * (1 + n^2*x)^n / (1 + x + n^2*x^2)^n.
1, 1, 1, 6, 21, 150, 962, 8640, 80220, 884520, 10709520, 140873040, 2098741680, 32163828480, 568234774800, 9957054159360, 203333391011520, 4013297314266240, 92967912795139200, 2041979786688441600, 52890421861957680000, 1279950952105367942400, 36648398470742114918400
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + x^2 + 6*x^3 + 21*x^4 + 150*x^5 + 962*x^6 + 8640*x^7 +... where A(x) = 1 + (1+x)*x/(1+x+x^2) + (1+4*x)^2*x^2/(1+x+4*x^2)^2 + (1+9*x)^3*x^3/(1+x+9*x^2)^3 + (1+16*x)^4*x^4/(1+x+16*x^2)^4 + (1+25*x)^5*x^5/(1+x+25*x^2)^5 +...
Crossrefs
Cf. A187741.
Programs
-
PARI
{a(n)=polcoeff(sum(m=0, n, x^m*(1+m^2*x)^m/(1+x+m^2*x^2 +x*O(x^n))^m), n)} for(n=0, 30, print1(a(n), ", "))
Comments