A210453 Decimal expansion of Sum_{n>=1} 1/(n*binomial(3*n,n)).
3, 7, 1, 2, 1, 6, 9, 7, 5, 2, 6, 0, 2, 4, 7, 0, 3, 4, 4, 7, 4, 7, 7, 1, 6, 6, 6, 0, 7, 5, 3, 5, 8, 8, 0, 5, 5, 8, 7, 6, 2, 9, 4, 6, 9, 0, 5, 1, 9, 7, 2, 2, 2, 1, 3, 6, 4, 7, 7, 8, 9, 3, 9, 5, 7, 3, 4, 0, 0, 0, 8, 3, 5, 3, 5, 5, 9, 8, 4, 9, 6, 9, 1, 3, 1, 4, 3, 2, 7, 5, 4, 1, 7, 7, 6, 5, 0, 5, 0, 9, 9, 2, 3, 2, 3, 9, 6, 1, 7, 5, 6, 9, 0, 7, 7, 3, 5, 3, 5, 2, 7, 3, 1, 6, 8, 6
Offset: 0
Examples
0.37121697526024703447477166607535880558762946905197...
References
- George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press, 2006, p. 60.
Links
- Necdet Batir, On the series Sum_{k=1..oo} binomial(3k,k)^{-1} k^{-n} x^k, Proc. Indian Acad. Sci. (Math. Sci.), Vol. 115, No. 4 (2005), pp. 371-381; arXiv preprint, arXiv:math/0512310 [math.AC], 2005.
- Courtney Moen, Infinite series with binomial coefficients, Math. Mag. 64 (1) (1991) 53-55.
Programs
-
Maple
A075778neg := proc() 1/3-root[3](25/2-3*sqrt(69)/2)/3 -root[3](25/2+3*sqrt(69)/2)/3; end proc: A210462 := proc() local a075778 ; a075778 := A075778neg() ; (1+1/a075778/(a075778-1))/2 ; end proc: A210463 := proc() local a075778,a210462 ; a075778 := A075778neg() ; a210462 := A210462() ; -1/a075778-a210462^2 ; sqrt(%) ; end proc: A210453 := proc() local v,x; v := 0.0 ; for x in [ A075778neg(), A210462()+I*A210463(), A210462()-I*A210463() ] do v := v+ x*log(1-1/x)/(3*x-2) ; end do: evalf(v) ; end proc: A210453() ;
-
Mathematica
RealDigits[ HypergeometricPFQ[{1, 1, 3/2}, {4/3, 5/3}, 4/27]/3, 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)
Formula
Equals Sum_{n>=1} 1/(n*A005809(n)).
Equals Integral_{x=0..1} x^2/(1-x^2+x^3) dx.
Equals Sum_(R) R*log(1-1/R)/(3*R-2) where R is summed over the set of the three constants -A075778, A210462-i*A210463 and A210462-i*A210463, i=sqrt(-1), that is, over the set of the three roots of x^3-x^2+1.
Equals (1/sqrt(23)) * (arctan(sqrt(3)/(2*phi-1)) * 18*phi/(phi^2-phi+1) - log((phi^3+1)/(phi+1)^3) * (3*sqrt(3)*phi*(1-phi))/(phi^3+1)), where phi = ((25+3*sqrt(69))/2)^(1/3) (Batir, 2005, p. 378, eq. (3.2)). - Amiram Eldar, Dec 07 2024