cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A090763 a(n) = (3*n+3)!/(3*n!*(2*n+2)!).

Original entry on oeis.org

1, 10, 84, 660, 5005, 37128, 271320, 1961256, 14060475, 100150050, 709634640, 5006710800, 35197176924, 246681069040, 1724337127920, 12025860872784, 83702724824775, 581558091471630, 4034231805704100, 27945630038703300
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)excite.com), Feb 15 2004

Keywords

Crossrefs

Programs

  • Maple
    a:= n->sum(j*binomial(n+2, j)*binomial(2*(n+1), j)/6, j=0..n+2): seq(a(n), n=0..21); # Zerinvary Lajos, Jul 31 2006
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1,
          3*(3*n+1)*(3*n+2)*a(n-1)/(2*n*(2*n+1)))
        end:
    seq(a(n), n=0..30); # Alois P. Heinz, Feb 01 2014
  • Mathematica
    a[n_] := 1/Integrate[(x^(2/3) - x)^n, {x, 0, 1}]; Table[ a[n], {n, 0, 19}] (* Robert G. Wilson v, Feb 18 2004 *)
    a[n_] := 1/(2*Beta[2n, n]) (* Enrique Pérez Herrero, May 17 2009 *)
    a[n_] : =1/2*Sum[j*Binomial[2 n, j]*Binomial[n, j], {j, 1, n}] (* Enrique Pérez Herrero, May 22 2009 *)
  • Sage
    [binomial(3*n,n)*n/3 for n in range(1,21)] # Zerinvary Lajos, May 17 2009

Formula

a(n) = 1/(Integral_{x=0..1} (x^(2/3)-x)^n dx).
a(n) = 1/(Integral_{x=0..1} (x-x^1.5)^n dx).
a(n) = 1/(2*Beta(2n,n)). - Enrique Pérez Herrero, May 17 2009
a(1) = 1; a(n) = a(n-1)*2*binomial(3n,3)/binomial(2n,3). - Enrique Pérez Herrero, May 19 2009
a(n) = (1/2)*Sum{j=1,n}(j*binomial(2n,j)*binomial(n,j)). - Enrique Pérez Herrero, May 22 2009
a(n) = (n+1)*A025174(n+1). - R. J. Mathar, Jun 21 2009
G.f.: Hypergeometric2F1(4/3, 5/3, 3/2, 27*x/4). - Stefano Spezia, Oct 18 2019
G.f.: (-(3*sqrt(4-27*x)*csc(arcsin((3*sqrt(3*x))/2)/3)^2)/((4*(4-27*x)^(3/2)))+(sqrt(3)*cot(arcsin((3*sqrt(3*x))/2)/3))/((4-27*x)*sqrt(x)*sqrt(4-27*x))). - Vladimir Kruchinin, Feb 12 2023
From Amiram Eldar, Dec 07 2024: (Start)
a(n) = (n+1) * A005809(n+1) / 3.
Sum_{n>=0} 1/a(n) = 3 * A210453. (End)

Extensions

More terms from Robert G. Wilson v, Feb 18 2004
Simpler description from Vladeta Jovovic, Feb 22 2004

A144485 a(n) = (3n + 2)*binomial(3n + 1,n).

Original entry on oeis.org

2, 20, 168, 1320, 10010, 74256, 542640, 3922512, 28120950, 200300100, 1419269280, 10013421600, 70394353848, 493362138080, 3448674255840, 24051721745568, 167405449649550, 1163116182943260, 8068463611408200, 55891260077406600
Offset: 0

Views

Author

Roger L. Bagula, Oct 12 2008

Keywords

Crossrefs

Programs

  • Magma
    [(3*n+2)*Binomial(3*n+1, n): n in [0..20]]; // Vincenzo Librandi, Feb 14 2014
  • Maple
    a:= proc(n) option remember; `if`(n=0, 2,
          3*(3*n+1)*(3*n+2)*a(n-1)/(2*n*(2*n+1)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 01 2014
  • Mathematica
    a[k_] = (3k + 2)Binomial[3k + 1, k]; Table[a[k], {k, 0, 30}]

Formula

a(n) = (3n+2)*A045721(n). - R. J. Mathar, Feb 01 2014
a(n) = 2*A090763(n). - Alois P. Heinz, Feb 01 2014
From Amiram Eldar, Dec 07 2024: (Start)
a(n) = 2 * (n+1) * A005809(n+1) / 3.
Sum_{n>=0} 1/a(n) = (3/2) * A210453. (End)

A225847 Decimal expansion of Sum_{n>=1} 1/(n*binomial(4*n,n)).

Original entry on oeis.org

2, 6, 9, 5, 2, 3, 9, 2, 9, 0, 2, 7, 7, 4, 2, 0, 1, 7, 3, 1, 7, 1, 8, 1, 6, 4, 7, 4, 8, 6, 3, 2, 9, 3, 0, 2, 8, 4, 0, 8, 4, 9, 8, 2, 5, 3, 4, 3, 2, 6, 6, 3, 0, 9, 8, 1, 5, 8, 4, 3, 7, 7, 2, 9, 1, 8, 6, 2, 8, 3, 6, 9, 8, 2, 7, 6, 4, 0, 8, 2, 5, 3, 2, 7, 3, 3, 1, 2, 6, 1, 8, 5, 8, 3, 0, 0, 4, 8, 4, 4, 0, 6, 0, 8, 3
Offset: 0

Views

Author

Jean-François Alcover, May 17 2013

Keywords

Examples

			0.269523929027742017317181647486329302840849825343266309815843772918628369827...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 60.

Crossrefs

Programs

  • Mathematica
    (1/4)*HypergeometricPFQ[{1, 1, 4/3, 5/3}, {5/4, 3/2, 7/4}, 27/256] // RealDigits[#, 10, 105]& // First

Formula

Equals Integral_{x>0} ((3*x)/((1 + x)*(1 + 3*x + 6*x^2 + 4*x^3 + x^4))) dx.
Equals (3*c/(2*c^2+1)) * log((c-1)/(c+1)) + (3*(c-1)/(2*(2*c^2+1))) * sqrt(c/(c+2)) * arctan(2*sqrt(c^2+2*c)/(c^2+2*c-1)) + (3*(c+1)/(2*(2*c^2+1))) * sqrt(c/(c-2)) * arctan(2*sqrt(c^2-2*c)/(c^2-2*c-1)), where c = sqrt(1 + (16/sqrt(3)) * cos(arctan(sqrt(229/27))/3)) (Batir and Sofo, 2013). - Amiram Eldar, Dec 07 2024

A225848 Decimal expansion of sum_{n>=1} 1/(n*binomial(5*n,n)).

Original entry on oeis.org

2, 1, 1, 8, 9, 9, 3, 7, 9, 4, 7, 7, 9, 8, 8, 0, 4, 0, 6, 2, 0, 1, 4, 7, 6, 8, 4, 2, 2, 7, 9, 2, 2, 2, 9, 2, 5, 7, 7, 9, 2, 9, 6, 7, 4, 1, 4, 4, 0, 6, 8, 0, 1, 5, 3, 6, 0, 7, 4, 8, 5, 6, 7, 7, 7, 4, 6, 7, 6, 3, 4, 7, 3, 0, 1, 9, 6, 9, 4, 0, 4, 0, 3, 9, 9, 9, 1, 5, 3, 0, 8, 0, 4, 6, 9, 6, 9, 5, 2, 3, 5, 0, 5, 9, 9
Offset: 0

Views

Author

Jean-François Alcover, May 17 2013

Keywords

Comments

Equals Integral_{x>0}((4*x)/((1 + x)*(1 + 4*x + 10*x^2 + 10*x^3 + 5*x^4 + x^5))).

Examples

			0.211899379477988040620147684227922292577929674144068015360748567774676347301...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 60.

Crossrefs

Programs

  • Mathematica
    (1/5)*HypergeometricPFQ[{1, 1, 5/4, 3/2, 7/4}, {6/5, 7/5, 8/5, 9/5}, 256/3125] // RealDigits[#, 10, 105]& // First
Showing 1-4 of 4 results.