A144485
a(n) = (3n + 2)*binomial(3n + 1,n).
Original entry on oeis.org
2, 20, 168, 1320, 10010, 74256, 542640, 3922512, 28120950, 200300100, 1419269280, 10013421600, 70394353848, 493362138080, 3448674255840, 24051721745568, 167405449649550, 1163116182943260, 8068463611408200, 55891260077406600
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Ömer Eğecioğlu, Timothy Redmond, and Charles Ryavec, Almost product evaluation of Hankel Determinants, The Electronic Journal of Combinatorics, Vol. 15, No. 1 (2008), #R6; arXiv preprint, arXiv:0704.3398 [math.CO], 2007.
-
[(3*n+2)*Binomial(3*n+1, n): n in [0..20]]; // Vincenzo Librandi, Feb 14 2014
-
a:= proc(n) option remember; `if`(n=0, 2,
3*(3*n+1)*(3*n+2)*a(n-1)/(2*n*(2*n+1)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Feb 01 2014
-
a[k_] = (3k + 2)Binomial[3k + 1, k]; Table[a[k], {k, 0, 30}]
A096793
Triangle read by rows: a(n,k) is the number of Dyck n-paths containing k odd-length ascents.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 0, 4, 0, 1, 3, 0, 10, 0, 1, 0, 21, 0, 20, 0, 1, 12, 0, 84, 0, 35, 0, 1, 0, 120, 0, 252, 0, 56, 0, 1, 55, 0, 660, 0, 630, 0, 84, 0, 1, 0, 715, 0, 2640, 0, 1386, 0, 120, 0, 1, 273, 0, 5005, 0, 8580, 0, 2772, 0, 165, 0, 1, 0, 4368, 0, 25025, 0, 24024, 0, 5148, 0, 220, 0, 1
Offset: 0
Table begins
.
n |k = 0 1 2 3 4 5 6 7 8
--+---------------------------------------------
0 | 1
1 | 0, 1
2 | 1, 0, 1
3 | 0, 4, 0, 1
4 | 3, 0, 10, 0, 1
5 | 0, 21, 0, 20, 0, 1
6 | 12, 0, 84, 0, 35, 0, 1
7 | 0, 120, 0, 252, 0, 56, 0, 1
8 | 55, 0, 660, 0, 630, 0, 84, 0, 1
.
a(4,0)=3 because the Dyck 4-paths containing no odd-length ascents are UUUUDDDD,UUDUUDDD,UUDDUUDD.
-
bi[n_, k_] := If[IntegerQ[k], Binomial[n, k], 0]; TableForm[Table[bi[(n+k)/2, (n-k)/2]bi[(3n-k)/2+1, (n+k)/2]/((3n-k)/2+1), {n, 0, 10}, {k, 0, n}]]
A360560
Triangle read by rows. T(n, k) = (1/2) * C(n, k) * C(3*n - 1, n) for n > 0 and T(0, 0) = 1.
Original entry on oeis.org
1, 1, 1, 5, 10, 5, 28, 84, 84, 28, 165, 660, 990, 660, 165, 1001, 5005, 10010, 10010, 5005, 1001, 6188, 37128, 92820, 123760, 92820, 37128, 6188, 38760, 271320, 813960, 1356600, 1356600, 813960, 271320, 38760, 245157, 1961256, 6864396, 13728792, 17160990, 13728792, 6864396, 1961256, 245157
Offset: 0
Triangle begins:
1;
1, 1;
5, 10, 5;
28, 84, 84, 28;
165, 660, 990, 660, 165;
1001, 5005, 10010, 10010, 5005, 1001;
-
T := (n, k) -> ifelse(n = 0, 1, binomial(n, k)*binomial(3*n - 1, n)/2):
for n from 0 to 6 do seq(T(n, k), k = 0..n) od;
-
T(n,m):=1/2*binomial(n+1,m)*binomial(3*n+2,n+1);
A378777
a(n) = n^2 * binomial(3*n, n).
Original entry on oeis.org
0, 3, 60, 756, 7920, 75075, 668304, 5697720, 47070144, 379632825, 3004501500, 23417943120, 180241588800, 1372689900036, 10360604899680, 77595170756400, 577241321893632, 4268838966063525, 31404136939468020, 229951212925133700, 1676737802322198000, 12180171012442098435
Offset: 0
- Amiram Eldar, Table of n, a(n) for n = 0..500
- Necdet Batir, On the series Sum_{k=1..oo} binomial(3k,k)^{-1} k^{-n} x^k, Proc. Indian Acad. Sci. (Math. Sci.), Vol. 115, No. 4 (2005), pp. 371-381; arXiv preprint, arXiv:math/0512310 [math.AC], 2005.
-
a[n_] := n^2 * Binomial[3*n, n]; Array[a, 25, 0]
-
a(n) = n^2 * binomial(3*n, n);
A370258
Triangle read by rows: T(n, k) = binomial(n, k)*binomial(2*n+k, k), 0 <= k <= n.
Original entry on oeis.org
1, 1, 3, 1, 10, 15, 1, 21, 84, 84, 1, 36, 270, 660, 495, 1, 55, 660, 2860, 5005, 3003, 1, 78, 1365, 9100, 27300, 37128, 18564, 1, 105, 2520, 23800, 107100, 244188, 271320, 116280, 1, 136, 4284, 54264, 339150, 1139544, 2089164, 1961256, 735471, 1, 171, 6840, 111720, 921690, 4239774, 11306064
Offset: 0
Triangle begins
n\k| 0 1 2 3 4 5 6 7
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0 | 1
1 | 1 3
2 | 1 10 15
3 | 1 21 84 84
4 | 1 36 270 660 495
5 | 1 55 660 2860 5005 3003
6 | 1 78 1365 9100 27300 37128 18564
7 | 1 105 2520 23800 107100 244188 271320 116280
...
-
seq(print(seq(binomial(n, k)*binomial(2*n+k, k), k = 0..n)), n = 0..10);
Showing 1-5 of 5 results.
Comments