cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A357613 Triangle read by rows T(n, k) = binomial(2*n, k) * binomial(3*n - k, 2*n).

Original entry on oeis.org

1, 3, 2, 15, 20, 6, 84, 168, 105, 20, 495, 1320, 1260, 504, 70, 3003, 10010, 12870, 7920, 2310, 252, 18564, 74256, 120120, 100100, 45045, 10296, 924, 116280, 542640, 1058148, 1113840, 680680, 240240, 45045, 3432
Offset: 0

Views

Author

F. Chapoton, Oct 06 2022

Keywords

Comments

Each line should be the f-vector of a cellular complex. The sequence seems to give the coefficients in a binomial basis of the integer-valued polynomials (x+1)*(x+2)*...*(x+2*n)*(x+1)*(x+2)*...*(x+n)/(n!*(2n)!).
The precise expansion is (x+1)*(x+2)*...*(x+2*n)*(x+1)*(x+2)*...*(x+n)/(n!*(2*n)!) = Sum_{k = 0..n} (-1)^k*T(n,k)*binomial(x+3*n-k, 3*n-k), as can be verified using the WZ algorithm. For example, n = 3 gives (x+1)^2*(x+2)^2*(x+3)^2*(x+4)*(x+5)*(x+6)/(3!*6!) = 84*binomial(x+9, 9) - 168*binomial(x+8, 8) + 105*binomial(x+7, 7) - 20*binomial(x+6, 6). - Peter Bala, Jun 25 2023

Examples

			As a triangle of numbers, this starts with
  1;
  3, 2;
  15, 20, 6;
  84, 168, 105, 20;
  495, 1320, 1260, 504, 70.
Here is an example for n=1 as coefficients (up to sign) in the binomial basis of integer-valued polynomials:
(x+1)*(x+2)*(x+1)/2 = 3*binomial(x+3,3)-2*binomial(x+2,2).
		

Crossrefs

Row sums A026000. Cf. A000984, A005809 (k=0), A144485 (k=1), A033282, A110608, A243660.

Programs

  • Maple
    A357613 := proc(n,k)
        binomial(2*n,k)*binomial(3*n-k,2*n) ;
    end proc:
    seq(seq(A357613(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Jul 06 2023
  • Mathematica
    Table[Binomial[2n,k]Binomial[3n-k,2n],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Oct 11 2023 *)
  • SageMath
    def a(n):
        return [binomial(2 * n, k) * binomial(3 * n - k, 2 * n)
                for k in range(n + 1)]

Formula

T(n,k) = binomial(2*n, k) * binomial(3*n - k, 2*n) for 0 <= k <= n

A378777 a(n) = n^2 * binomial(3*n, n).

Original entry on oeis.org

0, 3, 60, 756, 7920, 75075, 668304, 5697720, 47070144, 379632825, 3004501500, 23417943120, 180241588800, 1372689900036, 10360604899680, 77595170756400, 577241321893632, 4268838966063525, 31404136939468020, 229951212925133700, 1676737802322198000, 12180171012442098435
Offset: 0

Views

Author

Amiram Eldar, Dec 07 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n^2 * Binomial[3*n, n]; Array[a, 25, 0]
  • PARI
    a(n) = n^2 * binomial(3*n, n);

Formula

a(n) = n^2 * A005809(n).
a(n) = 3 * n * A090763(n-1) = 3 * n * A144485(n) / 2.
Sum_{n>=1} 1/a(n) = 6 * arctan(sqrt(3)/(2*phi-1))^2 - log((phi^3+1)/(phi+1)^3)^2/2, where phi = ((25+3*sqrt(69))/2)^(1/3) (Batir, 2005, p. 378, eq. (3.1)).
Showing 1-2 of 2 results.