A357613 Triangle read by rows T(n, k) = binomial(2*n, k) * binomial(3*n - k, 2*n).
1, 3, 2, 15, 20, 6, 84, 168, 105, 20, 495, 1320, 1260, 504, 70, 3003, 10010, 12870, 7920, 2310, 252, 18564, 74256, 120120, 100100, 45045, 10296, 924, 116280, 542640, 1058148, 1113840, 680680, 240240, 45045, 3432
Offset: 0
Examples
As a triangle of numbers, this starts with 1; 3, 2; 15, 20, 6; 84, 168, 105, 20; 495, 1320, 1260, 504, 70. Here is an example for n=1 as coefficients (up to sign) in the binomial basis of integer-valued polynomials: (x+1)*(x+2)*(x+1)/2 = 3*binomial(x+3,3)-2*binomial(x+2,2).
Programs
-
Maple
A357613 := proc(n,k) binomial(2*n,k)*binomial(3*n-k,2*n) ; end proc: seq(seq(A357613(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Jul 06 2023
-
Mathematica
Table[Binomial[2n,k]Binomial[3n-k,2n],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Oct 11 2023 *)
-
SageMath
def a(n): return [binomial(2 * n, k) * binomial(3 * n - k, 2 * n) for k in range(n + 1)]
Formula
T(n,k) = binomial(2*n, k) * binomial(3*n - k, 2*n) for 0 <= k <= n
Comments