A210463 Decimal expansion of the absolute value of the imaginary part of the two complex roots of x^3-x^2+1.
7, 4, 4, 8, 6, 1, 7, 6, 6, 6, 1, 9, 7, 4, 4, 2, 3, 6, 5, 9, 3, 1, 7, 0, 4, 2, 8, 6, 0, 4, 3, 9, 2, 3, 6, 7, 2, 4, 0, 1, 6, 3, 0, 8, 4, 9, 0, 6, 8, 2, 4, 5, 7, 4, 2, 0, 1, 8, 4, 7, 5, 9, 2, 1, 5, 4, 4, 1, 5, 2, 1, 7, 8, 3, 7, 8, 3, 9, 7, 6, 7, 7, 9, 1, 1, 4, 3, 7, 5, 4, 9, 3, 2, 9, 6, 4, 1, 5, 9, 0, 3, 9, 2, 5, 2, 8, 0, 4, 8, 7, 3, 3, 7, 7, 3, 6, 6, 0, 3, 3, 4, 3, 8, 9, 4
Offset: 0
Examples
0.744861766619744236593170428604392367240163...
Programs
-
Maple
A075778neg := proc() 1/3-root[3](25/2-3*sqrt(69)/2)/3 -root[3](25/2+3*sqrt(69)/2)/3; end proc: A210463 := proc() local a075778,a210462 ; a075778 := A075778neg() ; a210462 := A210462() ; -1/a075778-a210462^2 ; sqrt(%) ; end proc: evalf(A210463()) ;
-
Mathematica
-((2^(1/3)*(25 - 3*Sqrt[69])^(2/3) - 2)/(2*2^(2/3)*Sqrt[3]*(25 - 3*Sqrt[69])^(1/3))) // RealDigits[#, 10, 125]& // First (* Jean-François Alcover, Feb 20 2013 *)
-
PARI
polrootsreal(64*x^6+32*x^4+4*x^2-23)[2] \\ Charles R Greathouse IV, Apr 14 2014
Comments