cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210465 Let p_(3,1)(m) be the m-th prime == 1(mod 3). Then a(n) is the smallest p_(3,1)(m) such that the interval(p_(3,1)(m)*n, p_(3,1)(m+1)*n) contains exactly one prime == 1(mod 3).

Original entry on oeis.org

7, 13, 193, 271, 157, 193, 1297, 1741, 1231, 1033, 3541, 1447, 727, 2341, 9337, 1747, 9007, 2287, 3307, 14401, 8887, 8161, 8461, 28753, 23623, 23893, 10861, 59233, 70111, 28927, 44257, 101113, 152947, 41941, 65167, 41263, 183301, 409573, 150517, 35803, 138883, 81547, 79693
Offset: 2

Views

Author

Keywords

Comments

The limit of a(n) as n goes to infinity is infinity.
Conjectures: (1) If q is the nearest prime>a(n), then q-a(n)=4 or 6 and both of these cases occur infinitely many times. (2) If q-a(n)=4 then q is the lesser of twin primes.
Thus, if the conjectures are true, then there exist infinitely many triples of primes of the form {p,p+4,p+6}.

Crossrefs

Programs

  • Mathematica
    bPrime=Select[Table[Prime[n],{n,1000000}],Mod[#,3]==1&];(*A002476*)
    binarySearch[lst_,find_]:=Module[{lo=1,up=Length[lst],v},(While[lo<=up,v=Floor[(lo+up)/2];If[lst[[v]]-find==0,Return[v]];If[lst[[v]]0&]]]+offset-1]];
    z=1;(*example for "contains exactly ONE b-
    primes"*)Table[bPrime[[NestWhile[#1+1&,1,!((nextBPrime[n bPrime[[#1]],z]n bPrime[[#1+1]]))&]]],{n,2,20}]