A210470 Powerful numbers (A001694) which can be written as the sum of two relatively prime 3-powerful numbers (A036966) different from 1.
841, 968, 2312, 3528, 5041, 5776, 12769, 14884, 16641, 45125, 51984, 109561, 123823, 157609, 168921, 207576, 373321, 450241, 498436, 609725, 711828, 731025, 798768, 940896, 1223048, 1590121, 1792921, 2478843, 2481992, 2526752, 3157729, 3964081, 5346675, 6255001
Offset: 1
Keywords
Examples
841 = 216+625 ; 968 = 343+625 ; 2312=125+2187;
References
- Jean-Marie de Konninck, Those Fascinating Numbers, Amer. Math. Soc., 2009.
- Alonso Del Arte, Posting to the Sequence Fans Mailing List, Mar 10 2011.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..100
Programs
-
Maple
isA210470 := proc(n) if isA001694(n) then for i from 2 do p3 := A036966(i) ; if p3+2 > n then return false; end if; p3comp := n-p3 ; if isA036966(p3comp) and igcd(p3,p3comp) = 1 then # print(n,p3,p3comp) ; return true; end if; end do: return false; else return false; end if; end proc: for n from 1 do if isA210470(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, May 01 2013
-
Mathematica
With[{max = 10^7}, powQ[n_, e_] := Min[FactorInteger[n][[;; , 2]]] > e; pows = Union[Flatten[Table[i^2*j^3, {j, max^(1/3)}, {i, Sqrt[max/j^3]}]]]; Select[Union[Plus @@@ Select[Tuples[Select[pows, powQ[#, 2] &], {2}], CoprimeQ @@ # &]], # < max && powQ[#, 1] &]] (* Amiram Eldar, Jan 30 2023 *)
Formula
Extensions
More terms from Amiram Eldar, Jan 30 2023