cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210470 Powerful numbers (A001694) which can be written as the sum of two relatively prime 3-powerful numbers (A036966) different from 1.

Original entry on oeis.org

841, 968, 2312, 3528, 5041, 5776, 12769, 14884, 16641, 45125, 51984, 109561, 123823, 157609, 168921, 207576, 373321, 450241, 498436, 609725, 711828, 731025, 798768, 940896, 1223048, 1590121, 1792921, 2478843, 2481992, 2526752, 3157729, 3964081, 5346675, 6255001
Offset: 1

Views

Author

N. J. A. Sloane, Apr 22 2013

Keywords

Examples

			841 = 216+625 ; 968 = 343+625 ; 2312=125+2187;
		

References

  • Jean-Marie de Konninck, Those Fascinating Numbers, Amer. Math. Soc., 2009.
  • Alonso Del Arte, Posting to the Sequence Fans Mailing List, Mar 10 2011.

Crossrefs

Programs

  • Maple
    isA210470 := proc(n)
        if isA001694(n) then
            for i from 2 do
                p3 := A036966(i) ;
                if p3+2 > n then
                    return false;
                end if;
                p3comp := n-p3 ;
                if isA036966(p3comp) and igcd(p3,p3comp) = 1 then
                    # print(n,p3,p3comp) ;
                    return true;
                end if;
            end do:
            return false;
        else
            return false;
        end if;
    end proc:
    for n from 1 do
        if isA210470(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, May 01 2013
  • Mathematica
    With[{max = 10^7}, powQ[n_, e_] := Min[FactorInteger[n][[;; , 2]]] > e; pows = Union[Flatten[Table[i^2*j^3, {j, max^(1/3)}, {i, Sqrt[max/j^3]}]]]; Select[Union[Plus @@@ Select[Tuples[Select[pows, powQ[#, 2] &], {2}], CoprimeQ @@ # &]], # < max && powQ[#, 1] &]] (* Amiram Eldar, Jan 30 2023 *)

Formula

{ a in A001694: a=b+c and b,c >1 and b,c in A036966 and gcd(b,c)=1}. - R. J. Mathar, May 01 2013

Extensions

More terms from Amiram Eldar, Jan 30 2023