A210476 Let p_(4,3)(m) be the m-th prime == 3 (mod 4). Then a(n) is the smallest p_(4,3)(m) such that the interval(p_(4,3)(m)*n, p_(4,3)(m+1)*n) contains exactly one prime == 3(mod 4).
7, 67, 43, 67, 67, 191, 883, 43, 643, 379, 739, 103, 463, 643, 487, 883, 1303, 3847, 1447, 13963, 1087, 8863, 1999, 8167, 7687, 8443, 2707, 2203, 11083, 3463, 7687, 31387, 8419, 15919, 12979, 10099, 26683, 22027, 46687, 79687, 15439, 65839, 46723, 44683, 14887, 58963, 13879, 26947, 77587
Offset: 2
Keywords
Programs
-
Mathematica
myPrime=Select[Table[Prime[n],{n,3000000}],Mod[#,4]==3&]; binarySearch[lst_,find_]:=Module[{lo=1,up=Length[lst],v},(While[lo<=up,v=Floor[(lo+up)/2];If[lst[[v]]-find==0,Return[v]];If[lst[[v]]
0&]]]+offset-1]]; z=1;(*contains exactly ONE myPrime in the interval*) Table[myPrime[[NestWhile[#1+1&,1,!((nextMyPrime[n myPrime[[#1]],z+1]>n myPrime[[#1+1]]))&]]],{n,2,30}]
Comments