cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210476 Let p_(4,3)(m) be the m-th prime == 3 (mod 4). Then a(n) is the smallest p_(4,3)(m) such that the interval(p_(4,3)(m)*n, p_(4,3)(m+1)*n) contains exactly one prime == 3(mod 4).

Original entry on oeis.org

7, 67, 43, 67, 67, 191, 883, 43, 643, 379, 739, 103, 463, 643, 487, 883, 1303, 3847, 1447, 13963, 1087, 8863, 1999, 8167, 7687, 8443, 2707, 2203, 11083, 3463, 7687, 31387, 8419, 15919, 12979, 10099, 26683, 22027, 46687, 79687, 15439, 65839, 46723, 44683, 14887, 58963, 13879, 26947, 77587
Offset: 2

Views

Author

Keywords

Comments

The limit of a(n) as n goes to infinity is infinity.
Conjecture: every a(n), except for a(7) = 191, is the lesser of a pair of cousin primes p and p+4, (see A023200).

Crossrefs

Programs

  • Mathematica
    myPrime=Select[Table[Prime[n],{n,3000000}],Mod[#,4]==3&];
    binarySearch[lst_,find_]:=Module[{lo=1,up=Length[lst],v},(While[lo<=up,v=Floor[(lo+up)/2];If[lst[[v]]-find==0,Return[v]];If[lst[[v]]0&]]]+offset-1]];
    z=1;(*contains exactly ONE myPrime in the interval*)
    Table[myPrime[[NestWhile[#1+1&,1,!((nextMyPrime[n myPrime[[#1]],z+1]>n myPrime[[#1+1]]))&]]],{n,2,30}]