A211190 Number of ways to write 2n = p+2q+3r with p,q,r terms of A210479.
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3, 4, 4, 3, 4, 3, 3, 3, 4, 4, 5, 5, 5, 5, 4, 7, 6, 6, 7, 5, 6, 7, 7, 7, 7, 5, 5, 8, 6, 7, 8, 5, 8, 10, 9, 9, 11, 9, 8, 12, 9, 8, 10, 7, 7, 10, 8, 7, 9, 7, 6, 12, 8, 9, 11, 7, 8, 10, 8, 7, 11, 8, 7, 11, 7, 7, 10, 6, 5, 8, 7, 6, 10, 7, 7, 10, 7, 6, 11, 7, 7, 10, 5, 5, 10, 5
Offset: 1
Keywords
Examples
a(10)=1 since 2*10=5+2*3+3*3 with 3 and 5 terms of A210479.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..5000
- G. Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996) 205-210 [MR96i:11106].
- Zhi-Wei Sun, Sandwiches with primes and practical numbers, a message to Number Theory List, Jan. 13, 2013.
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588 [math.NT], 2012-2017.
Programs
-
Mathematica
f[n_]:=f[n]=FactorInteger[n] Pow[n_, i_]:=Pow[n, i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2]) Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}] pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0) p[k_]:=p[k]=pr[Prime[k]-1]==True&&pr[Prime[k]+1]==True q[n_]:=q[n]=PrimeQ[n]==True&&pr[n-1]==True&&pr[n+1]==True a[n_]:=a[n]=Sum[If[p[j]==True&&p[k]==True&&q[2n-2Prime[j]-3Prime[k]]==True,1,0],{j,1,PrimePi[n]},{k,1,PrimePi[(2n-2Prime[j])/3]}] Do[Print[n," ",a[n]],{n,1,100}]
Comments