cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A334882 Numbers k such that k and k+2 are both primitive practical numbers (A267124).

Original entry on oeis.org

28, 304, 306, 340, 460, 462, 858, 868, 1482, 1768, 1974, 2440, 2728, 2838, 2860, 3318, 3738, 4134, 4264, 4288, 4420, 4422, 5236, 5694, 6100, 6102, 7590, 8814, 9040, 9042, 10218, 11128, 11620, 11778, 12558, 12978, 13110, 14320, 14382, 14670, 15568, 16048, 16110
Offset: 1

Views

Author

Amiram Eldar, May 14 2020

Keywords

Examples

			28 is a term since 28 and 28 + 2 = 30 are both primitive practical numbers.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[fct_] := (ind = Position[fct[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most@fct]), ?(# > 1 &)]) == {}; pracTestQ[fct, k_] := Module[{f = fct}, f[[k, 2]] -= 1; pracQ[f]]; primPracQ[n_] := Module[{fct = FactorInteger[n]}, pracQ[fct] && AllTrue[Range@Length[fct], fct[[#, 2]] == 1 || ! pracTestQ[fct, #] &]]; Select[Range[2, 16200, 2], primPracQ[#] && primPracQ[# + 2] &]

A287682 Triples of practical numbers: numbers n such that n-2, n, n+2 are all practical numbers.

Original entry on oeis.org

4, 6, 18, 30, 198, 306, 462, 702, 1482, 2550, 3330, 4422, 5778, 6102, 6498, 9042, 11178, 11778, 14418, 15498, 17298, 17442, 19458, 20862, 21582, 22878, 23322, 23550, 25230, 26622, 26862, 26910, 27378, 30210, 34542, 36738, 38610, 39006, 39102, 40350, 40662
Offset: 1

Views

Author

Amiram Eldar, May 29 2017

Keywords

Comments

Melfi proved that this sequence is infinite.

Crossrefs

Programs

  • Mathematica
    practicalQ[n_] := Module[{f, p, e, prod=1, ok=True}, If[n<1 || (n>1 && OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e} = Transpose[f]; Do[If[p[[i]] > 1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]];
    a={}; p1=False; p2=False; k=2; While[Length[a]<100, p3=practicalQ[k]; If[p1 && p2 && p3, a=AppendTo[a,k-2]]; p1 = p2; p2 = p3; k+=2];a

A287683 5-tuples of practical numbers: numbers n such that n-6, n-2, n, n+2, n+6 are all practical numbers.

Original entry on oeis.org

18, 30, 198, 306, 462, 1482, 2550, 4422, 17298, 23322, 23550, 40350, 52578, 67938, 88506, 92202, 96222, 123006, 131070, 219102, 226182, 237690, 277506, 312702, 359658, 432822, 526878, 533370, 584166, 659934, 1032858, 1051650, 1140414, 1142658, 1243170, 1255422
Offset: 1

Views

Author

Amiram Eldar, May 29 2017

Keywords

Comments

Melfi conjectured that this sequence is infinite.

Crossrefs

Programs

  • Mathematica
    prQ[n_] := Module[{f, p, e, prod=1, ok=True}, If[n<1 || (n>1 && OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e} = Transpose[f]; Do[If[p[[i]] > 1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]];
    quintupleQ[n_] := prQ[n-6]&&prQ[n-2]&&prQ[n]&&prQ[n+2]&&prQ[n+6];
    a={}; k=8; While[Length[a]<100, If[quintupleQ[k], a=AppendTo[a,k]]; k+=2];a

A330871 Numbers k such that k and k+1 are both phi-practical numbers (A260653).

Original entry on oeis.org

1, 2, 3, 15, 255, 735, 2624, 3135, 4095, 4784, 5264, 5984, 7215, 7424, 7904, 9344, 10064, 10335, 10815, 11024, 11984, 12375, 12495, 13695, 16184, 16575, 22575, 22784, 22815, 26144, 26264, 27104, 30015, 30855, 30975, 32384, 33824, 34335, 34544, 38024, 38415, 39104
Offset: 1

Views

Author

Amiram Eldar, Apr 29 2020

Keywords

Examples

			1 is a term since both 1 and 2 are phi-practical numbers.
		

Crossrefs

Programs

  • Mathematica
    phiPracticalQ[n_] := If[n<1, False, If[n==1, True, (lst = Sort @ EulerPhi @ Divisors[n]; ok=True; Do[If[lst[[m]]>Sum[lst[[l]], {l, 1, m-1}]+1, (ok=False; Break[])], {m, 1, Length[lst]}]; ok)]]; Select[Range[40000], phiPracticalQ[#] && phiPracticalQ[#+1] &] (* after Frank M Jackson at A260653 *)

A294225 Practical numbers q with q + 2 and q^2 + 2 both practical.

Original entry on oeis.org

2, 4, 520, 2560, 3100, 4648, 6448, 6784, 7252, 11128, 12400, 15496, 19264, 26128, 26752, 26860, 28768, 31648, 32368, 36160, 37408, 41728, 45400, 48760, 53248, 53584, 54832, 57148, 58828, 63544, 66820, 68440, 68500, 73948, 74176, 80512, 81508, 84208, 93184, 94300, 106780, 112288, 113968, 118528, 131068
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 25 2017

Keywords

Comments

Conjecture: The sequence has infinitely many terms.
In 1996 G. Melfi proved that there are infinitely many positive integers q with q and q + 2 both practical.
As any practical number greater than 2 is a multiple of 4 or 6, when q > 2, q + 2 and q^2 + 2 are all practical, we must have q^2 + 2 == 0 (mod 6), hence q is not divisible by 3 and thus 4 | q and 6 | (q + 2), therefore q == 4 (mod 12).

Examples

			a(1) = 2 since 2, 2 + 2 = 4 and 2^2 + 2 = 6 are all practical.
a(2) = 4 since 4, 4 + 2 = 6 and 4^2 + 2 = 18 are all practical.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=FactorInteger[n];
    Pow[n_, i_]:=Pow[n,i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2]);
    Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}];
    pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0);
    pq[n_]:=pq[n]=pr[n]&&pr[n+2]&&pr[n^2+2];
    tab={};Do[If[pq[k],tab=Append[tab,k]],{k,1,132000}];Print[tab]

A334900 Numbers k such that k and k+2 are both bi-unitary practical numbers (A334898).

Original entry on oeis.org

6, 30, 40, 54, 510, 544, 798, 918, 928, 1120, 1240, 1288, 1408, 1480, 1566, 1672, 1720, 1768, 1792, 1888, 1950, 1974, 2046, 2430, 2440, 2560, 2728, 2814, 2838, 2968, 3198, 3318, 4134, 4158, 4264, 4422, 4480, 4758, 5248, 6102, 6270, 6424, 6942, 7590, 7830, 9280
Offset: 1

Views

Author

Amiram Eldar, May 16 2020

Keywords

Examples

			6 is a term since 6 and 6 + 2 = 8 are both bi-unitary practical numbers.
		

Crossrefs

Programs

  • Mathematica
    biunitaryDivisorQ[div_, n_] := If[Mod[#2, #1] == 0, Last@Apply[Intersection, Map[Select[Divisors[#], Function[d, CoprimeQ[d, #/d]]] &, {#1, #2/#1}]] == 1, False] & @@ {div, n}; bdivs[n_] := Module[{d = Divisors[n]}, Select[d, biunitaryDivisorQ[#, n] &]]; bPracQ[n_] := Module[{d = bdivs[n], sd, x}, sd = Plus @@ d; Min @ CoefficientList[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, sd}], x] >  0]; seq = {}; q1 = bPracQ[2]; Do[q2 = bPracQ[n]; If[q1 && q2, AppendTo[seq, n - 2]]; q1 = q2, {n, 4, 1000, 2}]; seq

A334903 Numbers k such that k and k+2 are both infinitary practical numbers (A334901).

Original entry on oeis.org

6, 40, 54, 918, 1240, 1288, 1408, 1480, 1672, 1720, 1768, 1974, 2440, 2728, 2838, 2968, 3198, 3318, 4134, 4264, 4422, 4480, 4758, 5248, 6102, 6270, 6424, 7590, 7830, 10624, 11128, 13110, 13182, 14248, 15496, 15928, 16254, 16768, 18088, 19864, 21112, 21318, 21630
Offset: 1

Views

Author

Amiram Eldar, May 16 2020

Keywords

Examples

			6 is a term since 6 and 6 + 2 = 8 are both infinitary practical numbers.
		

Crossrefs

Programs

  • Mathematica
    bin[n_] := 2^(-1 + Position[Reverse @ IntegerDigits[n, 2], ?(# == 1 &)] // Flatten); f[p, e_] := p^bin[e]; icomp[n_] := Flatten[f @@@ FactorInteger[n]]; fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; infPracQ[n_] := Module[{f, p, e, prod = 1, ok = True}, If[n < 1 || (n > 1 && OddQ[n]), False, If[n == 1, True, r = Sort[icomp[n]]; Do[If[r[[i]] > 1 + isigma[prod], ok = False; Break[]]; prod = prod*r[[i]], {i, Length[r]}]; ok]]]; seq = {}; q1 = infPracQ[2]; Do[q2 = infPracQ[n]; If[q1 && q2, AppendTo[seq, n - 2]]; q1 = q2, {n, 4, 10^4, 2}]; seq
Showing 1-7 of 7 results.